

2 CrossTalk—September/October 2015

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Towards Supply Chain Information Integrity Preservation
In supply chains, it is important to preserve the integrity of a product as it
is travels through the channel of distribution and is delivered to the final
consumer.
by Rasib Khan, Md Munirul Haque, and Ragib Hasan

Software and Hardware Assurance
Keeping DoD hardware and software technology secure is more critical
than ever.
by Tom Hurt and Ray Shanahan

Premature Allocation of Program Requirements to Suppliers
A discussion of the difficulties of formulating stable requirements early
in complex engineering programs, and the severe consequences on
program execution.
by Bohdan W. Oppenheim

From DIACAP to RMF: A Clear Path to a New Framework
What does transition from DIACAP to RMF mean to Marine Corps
Information Assurance and the DoD community at large?
by Major Henry R. Salmans III, Andrew C. Tebbe, and William J. Witbrod

Model-Based Engineering for Supply Chain Risk Management
Expanded use of commercial components has increased the complexity
of system assurance verification.
by Dan Shoemaker, Ph.D. and Carol Woody, Ph.D.

NASA’s Approach to Software Assurance
NASA’s implementation of this approach to the quality, safety, reliability,
security and verification and validation of software is brought together in
one discipline, software assurance.
by Martha Wetherholt

Software Security Assurance: SOUP to NUTS
The ability to assess risks of and from specific software supply
chains depends in large part on the amount, accuracy and availability
of essential information.
by Dr. C. Warren Axelrod

They Know Your Weaknesses – Do You?:
Reintroducing Common Weakness Enumeration
Knowing what makes your software systems vulnerable to attacks is
critical, as software vulnerabilities hurt security, reliability, and avail-
ability of the system as a whole.
by Yan Wu, Irena Bojanova, and Yaacov Yesha

11

4

14

20
26

Supply Chain Assurance

Departments

Cover Design by
Kent Bingham

 3 From the Sponsor

 51 Upcoming Events

 53 BackTalk

31

37

44

http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com
http://www.luminpublishing.com
mailto:Crosstalk.Articles@hill.af.mil
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines

CrossTalk—September/October 2015 3

FROM THE SPONSOR

CrossTalk would like to thank DHS for sponsoring this issue.

Imagine a cyber-reliant society with the Internet of Things (IoT) in
which connected devices and products have been evaluated and certified
from a perspective of consumer safety and protection. Safe and secure
use of cyber assets places responsibilities on operators and users; yet
realization of cyber assurance requires more focus on cyber safety and
security in the supply chain. It requires network-connectable devices to
be developed with cyber-physical security and safety in mind. IoT devices
need to be patchable to be responsive to a changing threat environ-
ment. They need to be evaluated to determine they do not have malware,
known vulnerabilities and software security weaknesses. This includes
relevant certification activities that focus on mitigating exploitable weak-
nesses that could have otherwise been vectors of zero-day exploits if not
mitigated prior to use. Independent third-party evaluation and certification
is desired to assure relevant mitigations have been accomplished prior
to use. IoT trust can be enabled with verification and validation activities
focused on quality, safety, and security of devices in the context of the
environments in which they would be used.

Fortunately for consumers, many white-hat researchers and test
centers now provide third-party analysis of IoT products relative to
cyber-physical security and safety. Underwriters Laboratories (UL) has
launched its Cyber Assurance Program (addressing the needs stated
above) and will be putting its mark on IoT devices and products; starting
with healthcare systems, industrial control systems and network devices.
These efforts provide better synergy between cyber assurance and cyber
insurance since both provide a focus for mitigating residual risk.

The use of standardized cyber security terms is vital for information ex-
change needed in supply chain assurance. The UL CAP offers extensive
coverage in evaluating IoT products for resilience to exploitation, and it
adopts the use of several internationally recognized standards in the ITU-
T CYBEX Series X for cybersecurity information exchange that covers
data networks, open system communications and security. Standardized
cyber security terms and enumerations enable interoperability, reduce
ambiguity, and provide precision for managing efforts seeking to mitigate
known vulnerabilities, exploitable weaknesses, and malware in cyber-
enabled capabilities. The ITU-T CYBEX uses several DHS-sponsored
standardized enumerations and languages vital to understanding the
resilience of IoT products. The Common Weakness Enumeration (CWE™)
https://cwe.mitre.org/ -- ITU-T CYBEX Recommendation ITU-T X.1524
http://www.itu.int/rec/T-REC-X.1524/en provides a formal list of known
software-related weakness types – a specific type of mistake or condi-
tion that, if left unaddressed, could under the proper conditions contribute
to a cyber-enabled capability being vulnerable to attack, allowing an
adversary to make items function in unintended ways. A “weakness”
represents a potential source vector for zero-day exploits or unreported
vulnerabilities. Known weaknesses are CWEs – those characterized, dis-
coverable, and potentially exploitable weaknesses with known mitigations.
A “vulnerability” is a weakness with an associated exploit that can be
directly used by an adversary to get a cyber-enabled capability to function
in an unintended manner. Typically, this is the violation of a reasonable
security policy for the cyber-enabled capability resulting in a negative
technical impact. Although all vulnerabilities involve a weakness, not all
weaknesses are vulnerabilities. The existence (even if only theoretical)
of an exploit designed to take advantage of a weakness (or multiple

This sponsor’s note is taken from an interview with Joe Jarzombek* after he spoke at CodenomiCON, when he shared his
thoughts about supply chain assurance from a perspective of enterprise risk management and user safety and security.

weaknesses) and achieve a negative technical impact is what makes a
weakness a vulnerability. Common Vulnerabilities and Exposures (CVE™)
leverages common names and identifiers for publicly know information
security vulnerabilities that have standardized use in ITU-T X.1520 CVE
https://cve.mitre.org/. A vulnerability is a mistake in software that can be
directly used by a hacker to gain access to a product, system or network.
A configuration issue or a mistake in exposure is a vulnerability if it does
not directly allow compromise but could be an important component of
a successful attack and is a violation of a reasonable security policy. An
information security exposure is a configuration issue of a mistake in
logic that allows unauthorized access or exploitation. Known vulnerabili-
ties are equated with publicly reported CVEs with patches in the National
Vulnerability Database (NVD).

CVEs are easily discoverable through binary analysis; yet suppliers
seem to routinely deliver new IoT products with old CVEs (some for
which the patch has been available for more than four years). Two thirds
of all CWEs are at the code level; detectable via static code analysis.
Many tools are available to detect and aid in mitigating CVEs and CWEs.
Why are users left on their own to find those CWEs and CVEs and
mitigate or patch those products when developers could have easily
mitigated the known vulnerabilities and weaknesses prior to delivery or
as part of a product release update? Suppliers have no liability associated
with products tainted with malware, known vulnerabilities and weakness-
es. Why do some suppliers prohibit security researchers and users from
evaluating products for these discoverable flaws that put users at risk?

Everyone can agree that IoT products need to have malware removed,
and for supply chain assurance to be realized, suppliers, acquirers, and
operators must also seek to mitigate known vulnerabilities and weak-
nesses prior to the products being put into use. The fact that new prod-
ucts are still being released with known vulnerabilities and weaknesses
causes many to question the cyber hygiene of supply chain actors. It
seems supply chain assurance can best be achieved with adoption of
independent evaluation and certification of IoT products because realiza-
tion of risks attributable to known vulnerabilities and weaknesses are
primarily on the use side; not the supply side. Cyber insurance should
also be interested in this cyber assurance practice since history has
demonstrated that there seems little incentive for suppliers to change
practices for mitigating these risks without independent evaluation and
certification of IoT products.

* Joe Jarzombek has been involved with CrossTalk for nearly two
decades. As the Director for Software & Supply Chain Assurance
(SSCA) in Cyber Security and Communications in the Department
of Homeland Security (DHS) he leads public-private collaboration
efforts for government interagency teams with industry, academia, and
standards organizations focused on the assurance of ICT/software
products and services. Through co-sponsorship of the SSCA Forum
and Working Groups, he co-leads community efforts addressing cyber
security needs, addressing software, supply chain external dependen-
cies, and security automation initiatives to enable scalable information
sharing among organizations and security researchers.

https://cwe.mitre.org/
http://www.itu.int/rec/T-REC-X.1524/en
https://cve.mitre.org/

4 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Towards Supply Chain
Information Integrity
Preservation
Rasib Khan, University of Alabama at Birmingham
Md Munirul Haque, Purdue University
Ragib Hasan, University of Alabama at Birmingham

Abstract. In supply chains, it is important to preserve the integrity of a product
as it is travels through the channel of distribution and is delivered to the final
consumer. In absence of a secure mechanism, adversaries can manipulate sup-
ply chains to tamper with or introduce fake components. To mitigate this threat,
we propose a novel architecture for preserving the integrity of the supply chain
information system. We present the concept of asserted proofs and secure loca-
tion governance to ensure tamper-proof supply chain information systems.

I. Introduction
Around the world, suppliers drive the overall product cycle. A

product travels through a sequence of locations till it reaches
the consumers, and is created by combining multiple intermedi-
ate products. There exist multiple business-to-business and
business-to-consumer delivery channels in the production of
each finished product. The sequence of destinations that a
product travels through as it is manufactured and delivered to
the final customer is referred as the product’s supply chain.

The efficiency and security of the supply chain is a crucial
concern for all industries. The transit of goods as it travels
through the global supply chain system has critical effects on
a nation’s economy and security. Apart from disruptions in the
supply chain, a nation can have highly unfavorable impacts with
criminal and adversarial networks trying to exploit the system.
We have seen that the supply chain in global economy has
increased efficiency in recent times. However, products supplied
from varied sources have introduced a greater risk in maintain-
ing the integrity of the supply chain. Most works on supply
chains include managing the supply chain, and the strategies
used to optimize the process [1, 2]. References and models,
such as the Supply Chain Operations Reference (SCOR) by
Stephens [3], address the economic, financial, and managerial
perspectives of the supply chain information management sys-
tem. The process of validating and evaluating the supply chain
performance can be a complex operation. There are numer-
ous proposals on how to identify the necessary components
to evaluate such supply chains [4]. However, little research has
been done to allow secure generation of supply chain informa-
tion in a secure and integrity protected manner.

In our work, we show how secure location provenance of a
product helps to preserve the integrity of the supply chain [5].
Ensuring the integrity of the system implies an unforgeable
preservation of location-specific records and information as a

particular item travels through the supply chain. The supply chain
provenance is the history of the product’s locations over time. In
generic term, it can be defined as the chain of custody (CoC),
which refers to the “chronological documentation or paper trail,
showing the seizure, custody, control, transfer, analysis, and
disposition of physical or electronic evidence” [6].

Methods, involving continuous tracking and reporting of locations
by third parties, violate the privacy and are not scalable for distrib-
uted environments. A more feasible and scalable approach is to re-
quire the product owner to obtain proofs of presence from each of
the intermediate locations in the supply chain. To issue a proof, the
authorities at a location first ensure the product’s presence within
a specific bounded region using secure localization techniques. A
proof of presence can then be issued to the product owner, which
can later be used to prove the product’s location to a third party
auditor. The supply of an item from the source to its final destina-
tion involves multiple intermediate locations and delivery authorities.
Thus, a provenance chain is formed as the item travels through the
supply chain. The provenance chain is delivered with the item at the
final destination. The receiver of the supplied item can thus verify
the obtained provenance chain, and validate the integrity of the item
with respect to the intermediate locations, times, and chronological
order of the visits for its supply chain.

II. Overview

Beginning with collection of raw materials to the finished
product, the very nature of the freight life cycle provides ample
opportunities to predators for replacing the authentic products
with counterfeit items and tamper the supply chain records. With
numerous hubs, assembly, and distribution points, it becomes a
challenge to protect and actively monitor the supply chain. Here,
we present the primary pitfalls of supply chain systems and the
desired features of such a system.

A. Supply Chains – Risks and Pitfalls
The global supply chain system is dependent on an inter-

connected network of transportation, supplier, manufacturer,
and information technology. As a result, the cross-operational
entities allow significant risks across a broad geographic and
industrial topology. A report published by The White House
discusses the national strategies for global supply chain security
and suggests active collaboration with the international com-
munity [9, 10]. The report discusses the strategies to promote
the timely, efficient, and secure movement of goods, such that to
preserve the supply chain from exploitation. It also suggests the
requirement to improve verification and detection capabilities to
identify contaminated, tampered, and prohibited items.

With an ever-increasing field of commercial activities, gray
market distribution and monitoring counterfeit products have
become a daunting task. The range of counterfeit products varies
from relatively non-injurious products to serious health and safety
related goods like medicine and insecticides. CNN reported in
May 2012 that counterfeit electronic components from China
have been incorporated into critical U.S. military systems [7]. This
included operation helicopters and surveillance planes, which had
put the troops at risk. The investigation for this case had actually
been going on for a while before it was detected [8]. Over 80% of

CrossTalk—September/October 2015 5

SUPPLY CHAIN ASSURANCE

the active drug ingredients and 40% of medicines in the US are
manufactured across 150 countries [15]. As a result, medicine
and counterfeit drugs is another critical aspect of maintaining
secure supply chain information systems.

Recently, Applied DNA Sciences Inc. proposed a DNA marking
technology named botanical SigNature to ensure authenticity and
guard against counterfeiting [11]. DNA taggants provide unique
authentication scheme and forensic proof of provenance. But
the biggest hindrance of this newest technology is the associ-
ated cost. Just the initial cost of procuring the DNA marking ink
requires roughly 68,000 dollars [12]. Given the circumstances, we
believe, a low cost, secure, and trustworthy digital solution for sup-
ply chain information integrity preservation is needed to effectively
track and monitor the route of a product before it is delivered to
the consumers. Additionally, access control and proper logging
mechanisms should exist to keep track and monitor activities at
the corresponding sites of the supply chain [13].

B. System Characteristics and Features
Distributed solutions are desired for many purposes, but they

come along with certain requirements. Here, we provide the de-
sired characteristics and features expected from an automated
supply chain information integrity protection system:

• User Friendly: The user interface should be designed con-
sidering the background of the target people. Their familiarity
with certain technology, education level, and physical condition
should be considered during the design of the system in order
to ensure maximum usability.

• Mobility: One key characteristic of the system is to main-
tain the mobility of the involved parties. Persons taking part in
creating the proof of presence should be able to do that when
they are in a specific bounded area rather than being present
along with the product.

• Smoothness & Ease-of-Use: The system should be designed
in such a way that users are comfortable with it. It should involve
least possible human interaction ensuring that people will be in-
terested in using the system for thousands of products each day.

• Extensibility: System design should ensure that some other
useful services can be incorporated into the system later, i.e. the
system should be extensible. Also it should be easy to incorporate
suggestions from users during the later versions of the system.

• Efficiency: The system should cause little or no obstruction to
the highly demanding activities of the supply chain. Timing require-
ment may very well define the success or failure of such systems.

• Cost Effectiveness: Supply chain involves literally thousands
of products and millions of people. The overall cost for the whole
system has to be marginal to expect a mass deployment of such
a system around the globe.

In addition to the above-mentioned characteristics, such systems
should have a certain feature set. Next, we present the desired
feature set for a secure supply chain proof generation scheme:

• Secure Generation: The scheme should be secure and pro-
tected from adversarial threats. The generated proofs should there-
fore ensure absolute validity of the information presented within.

• Tamper Evident: In contrast to being tamper-proof, tamper-

evident schemes ensure that any tampering with the proof
should be detectable.

• Vulnerability: Any system might have a scenario where it
fails to ensure security. However, any such system should be
able to guarantee the minimum level of vulnerability in its opera-
tion and proof generation schemes.

• Information Assertion: In a secure scheme, a successfully
generated proof should inherently imply that each of the entities
has willingly asserted the information available within the proof.

• Chronological Order: The system should be able to ensure
that the given set of proofs is chronologically ordered and the
sequence is protected from tampering.

• Post-Validation: The proofs that are generated from the sys-
tem should be able to be post-validated. That means, the proofs
can be presented to an auditor, who can validate the integrity
and validity of the proofs at a later time.

• Privacy Protected: The information in the supply chain sys-
tem should be privacy protected, and must not be visible to any
unauthorized personnel.

• Record Keeping Enabled: Once the proofs are generated,
each of the entities must be provided with a copy of the proof for
their own record keeping, which can be later retrieved if necessary.

III. System Model
In our work, we preserve the integrity of the channel of dis-

tribution for an item in order to mitigate the risks of counterfeit
products [5]. The information for the supply chain is stored as
a sequence of unforgeable and chronological location proofs,
based on the path through which a particular product travels. The
proposed scheme for preserving the supply chain information is
based on certain entities and types of proofs in the system. In the
following sub-sections, we present the elements of the system
and the corresponding types of proofs required for modeling a
secure supply chain information integrity preservation scheme.

A. System Elements
The following explains each of the elements in the system

model, their purpose, and their functionalities.
• Product (P): A product is the item, which is being trans-

ported through the supply chain system. A product is identified
with its bar code information, which stores the product identity
and the product code. All proofs generated within the system
include the product identifier.

Figure 1: Points of Interest in the Supply Chain System. The figure illustrates a
product transported from S1 to S3, and the corresponding points of interest to
preserve the supply chain information.

!

6 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

• Site Authority (S): The site authority is the entity, which is
responsible for any given site in the path of the supply chain
system. A site authority can be a manufacturing authority,
and actually manufactures a specific component for a larger
product. Alternatively, a site authority can also be an intermedi-
ate authority, where the particular product has been located
at least once, during the process of being delivered from the
manufacturer to the final consumer.

• Operation Supervisor (O): Each site authority needs to
have an operation supervisor, who is present on site during the
delivery or dispatch of a product. Therefore, all manufactur-
ing and intermediate authorities have an operation supervi-
sor available for his services at the given site. The operation
supervisor asserts valid deliveries and valid dispatches from a
particular site in the supply chain.

• Delivering Authority (D): The delivering authority is the
entity in the scheme, which is responsible for transporting a
particular product between two destinations in the supply chain
system. A delivering authority receives a particular product from
a site authority, and delivers it to the next site authority accord-
ing to the supply chain system.

• Auditing Consumer (C): The auditing consumer is the final
recipient of a product. The auditing consumer is delivered the
product along with a supply chain provenance. The supply chain
provenance can then be validated to verify the claimed supply
chain for the delivered product.

B. System Proofs
Given the activities within a supply chain, we are considering

four different points of interest for our proposed scheme. As
shown in Figure 1, a product P is being transported from site au-
thority S1 to S3. In the supply chain system, the product actually
is received from site authority S1 by a delivering authority D1. The
product P is then transported to another location, and delivered to
site authority S2. Subsequently, delivering authority D2 receives
the product P, and delivers it to site authority S3. At each of the
site authorities, there is also present an operational supervisor
(O1, O2, and O3) to assert the delivery and dispatch operations.

Given the above context, we observed four points of inter-
est where the integrity of the information should be preserved.
According to Figure 1, the four points of interest for a product P
are: (a) the product residing with a site authority, (b) the product
being transferred from the site authority to a delivering authority,
(c) the product residing with the delivering authority, and (d) the
product being transferred from the delivering authority to an-
other site authority. The four cases cover the possible scenarios
while a product travels through the supply chain system.

Thus, given the four points of interest for preserving the
integrity of the supply chain information, we have modeled the
following proofs for the proposed scheme:

• Holding Proof: A holding proof is a logical evidence, which
verifies the holding of a particular product at a particular site
authority or a delivering authority.

• Transferal Proof: A transferal proof is a logical evidence,
which verifies that a particular product has been handed over
from a site authority to a delivering authority, or vice-versa.

• Supply Chain Provenance: A supply chain provenance is
an alternating sequence of holding proofs and transferal proofs,
which is chained together, such that the order of the sequence
cannot be altered. The provenance chain can thus be utilized to
prove the sequence of sites that a particular product has traveled.

C. System Capabilities
We assume that each site authority S has a server and WiFi

network establishment. Additionally, the operation supervisor O
and the delivering authority D carries mobile devices, which are
capable of communicating with other devices and site authori-
ties over WiFi networks. The devices have local storage for
storing the supply chain proofs. It is assumed that the owner
has full access to the storage and computation of the device,
can run an application on the device, and can delete, modify, or
insert any content in the data stored in the device. Additionally, it
is assumed that the site authority, operation supervisor, and the
delivering authority can access each other’s public key.

According to the scheme, the site authority selects a supervi-
sor from the list at random and sends a request to assert a
proof for the given product P. Upon completion of a schematic
communication among all the parties, each entity receives a
proof, which has been mutually asserted by the other entities.
Based on the context, the proof can either be a holding proof
or a transferal proof. At a later time, the auditing consumer uses
the individual proofs from the supply chain provenance and the
yielded assertions in the proofs to determine the validity of the
claimed locations in the supply chain system.

It should be noted that, we are trying to preserve the trace of
chain of custody. Any question regarding the desired functional-
ity of the product has not been evaluated here. Moreover, if the
integrity of the product has been compromised before it has
reached the first node of the supply chain, our model will not be
able to detect that. Our focus is to integrate a digital provenance
chain system which can be validated by the auditor at the receiv-
ing end and provide the information about the appropriate link
of the supply chain records in case a product has been compro-
mised. Additionally, each of the product and/or components is
demarked with their corresponding barcodes, and is assumed
to be unforgeable. That is, it is assumed that the item cannot be
switched with the bar code remaining the same as before.

D. Threat Model
We consider different classes of adversaries, and also combi-

nations of these adversaries in a collusion attack to exploit the
integrity of the supply chain. In our threat model, we lay out the
assets of the supply chain system and the capability of attack-
ers. An adversarial entity in this context refers to any outsider, or
an insider, who has an ill intention of modifying the information
within the supply chain records.

The two main targets considered in our threat model are the
place and time of the corresponding proofs within the supply
chain records, both of which correspond to a particular product
P. An adversary should not be able to create a proof for any site
authority or delivering authority, where the product P has not ever
been located. Also, even if the product P has been held by a spe-

CrossTalk—September/October 2015 7

SUPPLY CHAIN ASSURANCE

cific authority, an adversary should not be able to create a proof
for a different (local) time than the actual time of holding. Thus, a
false proof of presence for a product P is one that asserts to the
product P’s presence at a location, which has not been visited by
the product, or for a different time than the actual time of visit.

IV. Securing the Supply Chain
In our scheme for preserving the integrity of supply chain

information, we address two specific types of proofs. In each of
the cases, there are two individual scenarios, which must be ad-
dressed to secure the supply chain information. In the following,
we discuss the four different proofs and constructing a tamper-
proof provenance chain for the supply chain information system.
A secure chain of the corresponding proofs, i.e., the provenance,
will therefore guarantee tamper-resistance to the supply chain
records. Moreover, we also show how the provenance chain is
generated and verified by auditing authorities/customers.

In each of the cases, as shown in figure 2, we employ a three-
way mutually authenticated interaction between the site author-
ity SX, the delivering authority DX, and the operation supervisor
OX. The three-way protocol allows a secure proof generation
between the delivering authority DX and the site authority SX,
which is asserted by the operation supervisor OX.

A. Holding Proof Generation
A holding proof refers to a proof of possession of a product

at a particular time, and implies the responsible entity, which is
accountable for the product at the given time. Thus, as a product
travels through the supply chain, the product may reside with
either a site authority or a delivering authority.

A. Holding Proof for Site Authority: In this occasion, the
site authority SX is in possession of the product P and receives
an asserted holding proof accordingly. The site authority SX
initiates the process for generating an asserted holding proof.
Subsequently, the delivering authority DX and the operation

supervisor OX create the asserted holding proof, and send the
proof to the site authority SX. After all the phases have complet-
ed, the site authority compares the two copies of the asserted
proof: the one that was received directly from the operation
supervisor OX, and the other one that was received via the deliv-
ering authority DX. If both the copies correspond to each other,
the holding proof for product P at SX has been successfully
generated. In case there is a failure in matching the two copies,
the site authority SX issues an invalid assertion notification to
the delivering authority DX and the operation supervisor OX, and
discards the proof accordingly.

B. Holding Proof for Delivering Authority: In the second
case, the delivering authority DX is in possession of the product
P, and receives a holding proof accordingly. The sequence of
actions and messages are similar to the procedure described
above. However, in this case, the delivering authority DX initiates
the process for generating an asserted holding proof. Subse-
quently, the site authority SX and the operation supervisor OX
creates the asserted holding proof, and sends the proof to the
delivering authority DX. Similar to the method described previ-
ously, the delivering authority DX compares the two copies of
the asserted holding proof. If successfully validated, DX stores
the proof, or discards the proof otherwise.

B. Transferal Proof Generation
The transferal proof is a logical statement, which validates a

successful transfer of authority and responsibility for a particular
product P at a specific time. Implicitly, the transferal proof implies
the release of liability of the product from a certain party. The trans-
feral proof can be generated in two cases: the product P has been
transferred from the site authority SX to the delivering authority DX,
or, from the delivering authority DX to the site authority SX.

A. Transfer from Site Authority: In this case, the transferal
proof is generated at the time when the product P is being
handed over by the site authority to the delivering authority. The
site authority sends a request for generating a transferal proof.
The request includes the ‘offload statement’ from the site au-
thority SX, which implies that the product P is being dispatched
from the site after it was held in possession by the site authority
SX for a specific duration of time. At the same time, the deliver-
ing authority receives the product P, and issues an ‘onload state-
ment’ to the operation supervisor OX. The site authority SX then
receives an asserted transferal proof with the ‘onload statement’
from the delivering authority DX, and the delivering authority DX
receives an asserted ‘offload statement’ from the site author-
ity SX. After successful completion of the above steps, the site
authority SX and the delivering authority DX store the corre-
sponding transferal proofs for future records. Each copy of the
transferal proof bears an assertion from the operation supervisor
OX. In case any of the validation procedures failed, the proof
is discarded, and an invalid assertion notification is sent to the
other entities in the system.

B. Transfer from Delivering Authority: The procedure
for generating a transferal proof during the transfer from a
delivering authority to a site authority is similar to the method
described above. Instead of the site authority initiating the Figure 2: The Three-Way Interaction for Proof Generation. In

each of the cases for generating location proofs, we employ a
three-way mutually authenticated interaction.

!

8 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

process, in this case, the delivering authority sends a request for
generating a transferal proof. The request includes the ‘offload
statement’ from the delivering authority DX, which implies that
the product P is being offloaded from the delivering authority
DX, after it was held in possession by the delivering authority
DX for a specific duration of time. At the same time, the site au-
thority receives the product P, and issues an ‘onload statement’
to the operation supervisor OX. Similar to the previous process,
the delivering authority DX receives an asserted transferal proof
with the ‘onload statement’ from the site authority SX, and the
site authority SX receives an asserted ‘offload statement’ from
the delivering authority DX. At any point in the protocol, any
failed verification results in an invalid assertion notification.

C. Maintaining a Supply Chain Provenance
The individual holding proofs and transferal proofs are gener-

ated at the corresponding locations according to the supply chain
of a product. At each of the phases where the individual proofs
are being generated, the previous proof can be first checked to
ensure earlier detection of supply chain anomaly. However, even
after the proofs are created validly, the individual proofs are not
organized in any sequence. Thus, the supply chain provenance
serves the purpose of chaining the proofs in a manner such that
the order and sequence of the proofs cannot be altered. A hold-

ing proof for the site authority must be succeeded by a corre-
sponding transferal proof from the site authority to the delivering
authority. The next proof in the chain is required to be another
holding proof for the delivering authority. Figure 3 illustrates a
provenance chain for the supply chain system. A supply chain
provenance, which exhibits the given sequence, is a valid claim for
the supply of the product P from site authority S1 to S2.

In the proposed protocol, we have used signed hash chaining
to preserve the sequence of the proofs to create the prov-
enance of the supply chain system. A hash chain is a concept
of creating hash values from a sequence of linked values using
standard hash functions, such as SHA-256/SHA-512. The
provenance chain in this case can thus be created accordingly.
This ensures that the order and integrity of the sequence is
preserved. Subsequently, the corresponding signed hashes can
be presented to the auditing consumer, along with the proofs.
The auditing consumer can then securely verify each of the
holding proofs, transferal proofs, and their order of sequence by
recreating the hash chain.

V. Digital Content Supply Chain
Though our proposed model has mainly focused on protect-

ing the chain of custody of tangible products, it also covers the
domain of non-tangible products like software or intellectual
properties considering their mode of transportation. Whenever
any software or intellectual property transfers through the sup-
ply chain, they can be first converted into tangible goods like CD
or paper documents, whose chain of custody can be maintained
and proved by our system.

However, maintaining a secure supply chain system for digital
content is also critical. Our proposed scheme can be adopted
for digital content supply chain integrity preservation. In that
case, the model would refer to the site authority as the content
creator, the delivering authority as the content storage server,

Figure 3: A Supply Chain Provenance. The figure illustrates a product trans-
ported from S1 to S2, and the corresponding proofs, which are being used to
create a secure supply chain provenance.

!

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
the areas of emphasis we are looking for:

Cyber Workforce Issues
Mar/Apr 2016 Issue

Submission Deadline: Oct 10, 2015

Integration and Interoperability
May/Jun 2016 Issue

Submission Deadline: Dec 10, 2015

CMMI - The Agile Way
Jul/Aug 2016 Issue

Submission Deadline: Feb 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

CrossTalk—September/October 2015 9

SUPPLY CHAIN ASSURANCE

and the operational supervisor as the content approval author-
ity. The three entities, therefore, would work in a similar fashion
as described above. The digital content (e.g. software code)
can be asserted by the content approval authority (e.g. software
development team manager) for creating holding proofs for the
content creator (e.g. software developer) and the storage server
(e.g. code repository managed by the network admin). Addition-
ally, the transferal proofs can also be created when a content
creator downloads or uploads a digital content to or from the
storage server. The provenance of the proofs, and hence the
supply chain of the content, can be incrementally appended with
the digital content (e.g. software product) as meta-data, and can
be post-verified by an auditing authority and/or consumer using
trusted certification authority signatures.

There are also known approaches to secure preservation of
data provenance [14]. In such models, the generation, possession,
and transfer of data are maintained using meta-file information.
The meta-data are maintained in a secure provenance chain to
ensure integrity preservation and tamper resistance. Therefore,
we believe that similar data provenance techniques can be em-
ployed at the software code generation points to ensure a post-
verifiable supply chain of program codes and components.

VI. Discussion and Future Work
The supply chain system is global system of diverse loca-

tions and items being transported over a network of suppliers,
manufacturers, and delivery systems. The multitude of entities has
introduced a greater risk in maintaining the integrity of the supply
chain information system. In this work, we have described the mo-
tivation and desired properties of a secure supply chain recording
process. Based on the given requirements, we have presented a
model for the system elements and capabilities, system proofs,
and the corresponding threat model. We utilized the model to
design secure generation of holding proofs and transferal proofs,
depending on the given context of actions within the supply chain.
Furthermore, we also illustrated how the proofs can be used to
create chronological hash chains. The given data item of prove-
nance protected proofs can thus be effectively utilized to preserve
the integrity of supply chain information and mitigate the risks of
counterfeit components trickling into a system.

Currently we are testing the feasibility of our proposed model
by deploying it on a small-scale supply chain. Our work so far has
been able to validate the three-party assertion oriented proof gen-
eration. We have applied the designed model to generate proofs
for locations and generated experimental results based on different
threshold values. In our proof-of-concept prototype deployment,
we were able to guarantee up to 99.99% reliability for the proof
requesting entity, with approximately 6% false positives during veri-
fication. Our future work includes developing a standalone low-cost
device, which can perform the three-way interactive proof genera-
tion and protect the integrity of the supply chain system.

Acknowledgment
This research was supported by the Department of Home-

land Security Grant #FA8750-12-2-0254 and a 2012 Google
Faculty Research Award.

Rasib Khan, M.Sc., is a graduate research
assistant in SECRETLab and a Ph.D. can-
didate at the University of Alabama at Bir-
mingham, USA. Khan was a NordSecMob
European Union Erasmus Mundus Scholar,
and received dual MS degrees in Security
and Mobile Computing from Royal Institute
of Technology (KTH), Sweden, and Aalto
University, Finland in 2011.
Phone: 205-566-4546
Email: rasib@cis.uab.edu

Dr. Md Munirul Haque, Ph.D., is a research
scientist at the Regenstrief Center for
Healthcare Engineering, Purdue University.
Previously, Haque was a post-doctoral
fellow in SECRETLab at the University of
Alabama at Birmingham. He was a member
of Ubicomp lab, Marquette University,
USA, from where he received his Ph.D. in
2013. Haque received his B.Sc degree in
Computer Science and Engineering from
Bangladesh University of Engineering and
Technology (BUET), Bangladesh in 2003.
Phone: 414-614-9715
Email: mhaque@purdue.edu

Dr. Ragib Hasan, Ph.D., is a tenure-track
Assistant Professor at the Department of
Computer and Information Sciences at the
University of Alabama at Birmingham. Prior
to joining UAB, He received his Ph.D. and
M.S. in Computer Science from the Universi-
ty of Illinois at Urbana Champaign in October,
2009, and December, 2005, respectively,
and was an NSF/CRA Computing Innova-
tion Fellow at the Department of Computer
Science, Johns Hopkins University. Hasan
has received multiple awards in his career,
including the 2014 NSF CAREER Award
and the 2013 Google RISE Award.
Phone: 205-934-8643
Email: ragib@cis.uab.edu

ABOUT THE AUTHORS

mailto:rasib@cis.uab.edu
mailto:mhaque@purdue.edu
mailto:ragib@cis.uab.edu

10 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

REFERENCES

1. J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min, N. W. Nix, C. D. Smith, and Z. G.
Zacharia, “Defining supply chain management,” Journal of Business logistics, vol.
22, no. 2, pp. 1–25, 2001.

2. Simchi-Levi, E. Simchi-Levi, and P. Kaminsky, “Designing and managing the supply
chain: Concepts, strategies, and cases”. McGraw- Hill United-States, 1999.

3. S. Stephens, “Supply chain operations reference model version 5.0: a new tool to
improve supply chain efficiency and achieve best practice,” Information Systems
Frontiers, vol. 3, no. 4, pp. 471–476, 2001.

4. B. M. Beamon, “Measuring supply chain performance,” International Journal of
Operations & Production Management, vol. 19, no. 3, pp. 275–292, 1999.

5. R. Khan, M. M. Haque, and R. Hasan, “A secure location proof generation scheme
for supply chain integrity preservation,” in Proceedings of The 2013 IEEE Interna-
tional Conference on Technologies for Homeland Security, ser. HST ‘13, Waltham,
MA, USA, 2013, pp. 446–450.

6. Chain of custody, Wikipedia. Online at: <http://en.wikipedia.org/wiki/Chain_of_custody>.
7. L.Shaughnessy, “Probe finds flood of fake military parts from China in U.S. equip-

ment” Security Clearance, CNN Security News. Available online at <http://security.
blogs.cnn.com/2012/05/22/probe-finds-flood-of-fake-military-parts-from-china-in-
u-s-equipment/>. Tech. Report, May 2012.

8. P. Courson, “Report: Bogus U.S. military parts traced to China,” CNN U.S. Online at
<http://www.cnn.com/2011/11/07/us/u-s-military-bogus-parts/>, Tech. Report, Nov 2011.

9. The White House, “National strategy for global supply chain security”. Online at
<https://www.whitehouse.gov/sites/default/files/national_strategy_for_global_
supply_chain_security.pdf>, Jan 2012.

10. The White House, “National strategy for global supply chain security implementation
update,” Online at <https://www.whitehouse.gov/sites/default/files/docs/national_
strategy_for_global_supply_chain_security_implementation_update_public_ver-
sion_final2-26-131.pdf>, Jan 2013.

11. Applied DNA Sciences, “Applied DNA sciences begins DNA marking microchips for
a U.S. government agency - Protecting the electronics industry and government
throughout the supply”. Online at <http://www.marketwired.com/press-release/
applied-dna-sciences-begins-dna-marking-microchips-for-a-us-government-agency-
otcbb-apdn-1506279.htm>. Apr 2011.

12. Lee Mathiesen, “The microelectronics DNA marking moral dilemma”. Online at <http://
www.militaryaerospace.com/articles/2013/03/Mathiesen-DNA-viewpoint.html>, Mar 2013.

13. S.Borg, “Securing the supply chain for electronic equipment: A strategy and frame-
work,” Internet Security Alliance Publication, Nov 2008.

14. R. Hasan, R. Sion, and M. Winslett. “The case of the fake Picasso: Preventing history
forgery with secure provenance”. In Proceedings of the 7th USENIX Conference on File
and Storage Technologies (FAST 09), pages 1–12. USENIX Association, 2009.

15. Howard Sklamberg, “Counterfeit Drugs: Fighting Illegal Supply Chains”. Food and
Drug Administration, Department of Health and Human Services. Online at <http://
www.fda.gov/NewsEvents/Testimony/ucm387449.htm>. Feb 2014.

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@us.af.mil

or call (801) 777-9828
www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

http://en.wikipedia.org/wiki/Chain_of_custody
http://security.blogs.cnn.com/2012/05/22/probe-finds-flood-of-fake-military-parts-from-china-in-u-s-equipment/
http://security.blogs.cnn.com/2012/05/22/probe-finds-flood-of-fake-military-parts-from-china-in-u-s-equipment/
http://security.blogs.cnn.com/2012/05/22/probe-finds-flood-of-fake-military-parts-from-china-in-u-s-equipment/
http://security.blogs.cnn.com/2012/05/22/probe-finds-flood-of-fake-military-parts-from-china-in-u-s-equipment/
http://www.cnn.com/2011/11/07/us/u-s-military-bogus-parts/
https://www.whitehouse.gov/sites/default/files/national_strategy_for_global_supply_chain_security.pdf
https://www.whitehouse.gov/sites/default/files/national_strategy_for_global_supply_chain_security.pdf
https://www.whitehouse.gov/sites/default/files/docs/national_strategy_for_global_supply_chain_security_implementation_update_public_ver-sion_final2-26-131.pdf
https://www.whitehouse.gov/sites/default/files/docs/national_strategy_for_global_supply_chain_security_implementation_update_public_ver-sion_final2-26-131.pdf
https://www.whitehouse.gov/sites/default/files/docs/national_strategy_for_global_supply_chain_security_implementation_update_public_ver-sion_final2-26-131.pdf
https://www.whitehouse.gov/sites/default/files/docs/national_strategy_for_global_supply_chain_security_implementation_update_public_ver-sion_final2-26-131.pdf
http://www.marketwired.com/press-release/applied-dna-sciences-begins-dna-marking-microchips-for-a-us-government-agency-otcbb-apdn-1506279.htm
http://www.marketwired.com/press-release/applied-dna-sciences-begins-dna-marking-microchips-for-a-us-government-agency-otcbb-apdn-1506279.htm
http://www.marketwired.com/press-release/applied-dna-sciences-begins-dna-marking-microchips-for-a-us-government-agency-otcbb-apdn-1506279.htm
http://www.marketwired.com/press-release/applied-dna-sciences-begins-dna-marking-microchips-for-a-us-government-agency-otcbb-apdn-1506279.htm
http://www.militaryaerospace.com/articles/2013/03/Mathiesen-DNA-viewpoint.html
http://www.militaryaerospace.com/articles/2013/03/Mathiesen-DNA-viewpoint.html
http://www.fda.gov/NewsEvents/Testimony/ucm387449.htm
http://www.fda.gov/NewsEvents/Testimony/ucm387449.htm
mailto:309SMXG.SODO@us.af.mil
http://www.facebook.com/309SoftwareMaintenanceGroup

CrossTalk—September/October 2015 11

SUPPLY CHAIN ASSURANCE

Introduction
The challenge of ensuring that DoD software and hardware

will operate only as intended is formidable. DoD is more depen-
dent than ever on technological solutions for mission require-
ments, and this has led to heightened awareness of the pos-
sibility that adversaries could target DoD supply chains, insert
malicious functionality into software and hardware, or degrade
critical systems with counterfeit parts. The globalization of the
defense industrial base also has led to concerns about the com-
petitiveness, cost-consciousness, and sources of many suppli-
ers. Given the potential gaps in DoD SwA and HwA capabilities,
as well as the cost and complexity associated with increasing
the effectiveness of SwA and HwA throughout the life cycle of
defense programs, DoD leaders seek to develop and promote
enterprise solutions for evaluating and ensuring the cyberse-
curity of defense systems, components, and services, and for
conducting remediation actions where necessary.

In the National Defense Authorization Act for Fiscal Year
2014, [2] Congress directed DoD to establish a joint federation
of capabilities to support trusted defense systems and to ensure
the security of software and hardware developed, acquired,
maintained, and used by the Department. On February 9, 2015,

Software and
Hardware Assurance
DoD Establishes Federation of Software
and Hardware Assurance Providers
Tom Hurt, ODASD(SE)
Ray Shanahan, ODASD(SE)

Abstract. Keeping DoD hardware and software technology secure is more
critical than ever. In response to a mandate from Congress, Deputy Secretary of
Defense Robert O. Work chartered the Joint Federated Assurance Center (JFAC)
[1] as a federation of U.S. Military Department and agency software assurance
(SwA) and hardware assurance (HwA) organizations and capabilities.
According to this charter, the JFAC is charged with supporting program offices
throughout the life cycle with SwA and HwA expertise, capabilities, policies,
guidance, and best practices. The JFAC is responsible for coordinating with
DoD organizations and activities that are developing, maintaining, and offering
software and hardware vulnerability detection, analysis, and remediation support.
Other roles and responsibilities of the JFAC include:
• Conducting SwA and HwA analyses and assessments in support of defense
acquisition, operations and sustainment activities;
• Advocating for the advancement of DoD interests in SwA and HwA research,
development, and test and evaluation activities; and
• Building relationships with other communities of interest and practice in
SwA and HwA such as other government organizations, academic environ-
ments, and private industry.

Deputy Secretary of Defense Robert O. Work signed the charter
for a new organization, the Joint Federated Assurance Center
(JFAC), to coordinate this effort.

The JFAC builds on several earlier initiatives that also focused
on strengthening the processes for assessing and implement-
ing SwA, HwA, and related defense system trust and assurance
activities. These activities include efforts to promote Trusted
Systems and Networks (TSN), Supply Chain Risk Management
(SCRM), and requirements for acquisition program managers
to submit updated Program Protection Plans (PPP) at each
milestone of the DoD acquisition life cycle. The JFAC will sup-
port these earlier initiatives and will enhance system security
engineering (SSE) through DoD policy, guidance, studies, and
supporting information products, as part of a comprehensive
program protection process that promotes trust and assurance
in defense system hardware and software.

JFAC Purpose and Objectives
As outlined in its charter, the JFAC will facilitate collaboration

among the Military Departments and agencies that provide SwA
and HwA services to ensure defense programs effectively plan,
implement, and employ DoD SwA and HwA capabilities and
investments throughout the acquisition life cycle.

The JFAC objectives include:
• Support program offices by identifying and facilitating

access to DoD SwA and HwA expertise and capabilities. The
JFAC will be a resource for program offices to access SwA and
HwA policies, guidance, standards, acquisition practices, best
practices, training, and testing support. In addition, the JFAC will
provide access to assurance-related expertise and capabilities
for DoD program offices, as well as facilitate coordination and
support from the service providers.

• Identify and develop requirements for research and develop-
ment (R&D) initiatives in support of the DoD R&D strategy to inno-
vate vulnerability analysis, testing, and protection tools for SwA and
HwA. Through a DoD SwA and HwA capability mapping process,
the JFAC will identify potential gaps and needed capabilities.

• Enable efficient coordination and use of SwA and HwA
design, analysis, and test capabilities. The JFAC will facilitate
the exchange of information, techniques, and best practices
for promoting assurance as part of the normal systems engi-
neering and SSE processes.

• Serve as the DoD point of contact for interdepartmental
and interagency efforts concerning SwA and HwA. The JFAC
will engage with representatives of other federal departments
and agencies as their access point to increase mutual aware-
ness of tools, evidence-based practices, support environments,
and an expanded talent pool.

• Develop and sustain a Department inventory of SwA
and HwA resources, including tool licenses. The JFAC will
explore and recommend ways to enhance access to enter-
prise licenses for selected automated software and hardware
vulnerability analysis applications. The JFAC also will consider
other potential ways to provide affordable and flexible access
to automated, vetted tools for assessing and improving SwA
and HwA throughout the Department.

12 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Organization
Responsibility for management and oversight of the JFAC

resides with a Joint Steering Committee led by the Office of the
Assistant Secretary of Defense for Research and Engineering
(ASD(R&E)), in conjunction with representatives from the DoD
Components. The ASD(R&E) is already charged with the develop-
ment and oversight of defense policy and guidance for SSE, the
Program Protection Plan Outline and Guidance [3], SwA, and HwA.
The alignment of the JFAC with ASD(R&E) enables the JFAC to
interact with SwA and HwA activities throughout the Department.

The JFAC Steering Committee is the governing body and
provides senior-level management, oversight, and accountability for
JFAC interests and concerns. Members of the Steering Commit-
tee currently include senior executive service level-representatives
from the Office of the Under Secretary of Defense for Acquisition,
Technology and Logistics; DoD Chief Information Officer; Depart-
ments of the Army, Navy and Air Force; Defense Information Sys-
tems Agency; National Security Agency; National Reconnaissance
Office; Defense Microelectronics Activity; and Missile Defense
Agency. Over time, the number of stakeholders may expand to take
in additional defense organizations, issues and interests.

The JFAC currently includes three working groups and a
coordination activity. The JFAC Action Officer Working Group
is composed of senior staff from each organization within the
JFAC Steering Committee, along with other members as ap-
proved by the JFAC Steering Committee. The JFAC SwA and
HwA Technical Working Groups include subject matter experts
representing the DoD service provider organizations and other
technical expertise as needed. The JFAC Coordination Activity
is composed of the JFAC Coordination Center (JFAC-CC) and
representatives from the SwA and HwA service providers. The
organizational structure is designed to facilitate open dialogue,
coordination, and direct support for acquisition program manag-
ers from the federation of providers of SwA and HwA tools and
services, throughout the life cycle of a program, with growing
emphasis on sustainment.

Promoting Existing Assurance Capabilities
Each of the participating JFAC member organizations already

manages an array of SwA and HwA capabilities and services as
part of their normal program development, operations and support
activities. Assembling these capabilities within a joint federated
organization will bring about new opportunities to share information,
promote best practices, prioritize and allocate scarce resources to
address shared problems, and to inventory and license tools and
resources. It will allow the organizations to standardize methods for
identifying intelligence, research, development, and test and evalua-
tion support for SwA and HwA interests and concerns.

Developing New Operational Concepts and Processes
The members of the JFAC working groups have already de-

voted considerable time and attention to developing a concept
of operations for the federation that will encourage federa-
tion members to share information about their current SwA
and HwA expertise, capabilities and capacities. For example,
members can benefit from sharing information about relevant

policies, standards, requirements, contract language, metrics,
and procedures for acquiring, engineering, developing, testing,
and evaluating trusted defense systems and services.

The members of the working groups are communicating with one
another and their in-house service support organizations and other
stakeholders about the roles and responsibilities of the federation in
support of program offices, including applying the program protection
planning process throughout the DoD acquisition life cycle. Improve-
ments to the policy and guidance for SwA and HwA are being devel-
oped and will be applied at the next update of the Program Protection
Plan Outline and Guidance, and evaluation criteria [4]. The JFAC
member organizations are also developing individualized communica-
tion plans to outline process flows and methods for requesting services
and support as part of the ongoing effort leading up to the declaration
of Initial Operational Capability (IOC) for the JFAC.

At the declaration of IOC, which is expected to occur in the
4th quarter of calendar year 2015, the JFAC will be prepared to
offer program management offices specific information about
existing SwA and HwA service providers and capabilities, and
guidance on how to plan and integrate these services and capa-
bilities into their program management activities.

Assessing Capability Needs and Filling Gaps
Going forward from IOC to Full Operational Capability (FOC)

over the next few years, the JFAC, in coordination with its
member organizations providing SwA and HwA capabilities and
services and related R&D efforts, will maintain a SwA and HwA
capability map. The map will include a baseline of existing centers
and capabilities of SwA and HwA services within the Department
and elsewhere. The JFAC will identify and prioritize assurance ca-
pability gaps and will devise and recommend a strategy to validate
and address such gaps. Potential gaps might include technical
capabilities, resources and capacities, policy, assurance metrics,
technical guidance, and program support tools or processes. If the
necessary capabilities cannot be satisfied by existing centers and
service providers, the JFAC working groups will make recommen-
dations to the JFAC Steering Committee for consideration as the
primary owners and users of assurance capabilities and services.

Fostering Cooperation

The JFAC is working with selected pilot programs nominated
by their parent organizations to clarify the operational aspects of
bringing together programs and assurance services without add-
ing to the existing demands on program managers. The JFAC is
committed to avoiding redundancy while helping programs identify
and address SwA and HwA concerns that other quality control or
testing activities might have overlooked. The pilots are looking at
the Department’s current SwA and HwA capabilities and interests
and developing ideas regarding how the JFAC can best organize
itself to support the needs of program managers, assurance service
providers, and other stakeholders in an effective way.

The JFAC will align with and complement other SwA and
HwA-related activities occurring in other parts of the Depart-
ment, the U.S. government and industry, including the work of
those involved in program protection, the DoD SwA Community
of Practice, TSN, trusted suppliers, SCRM, systems engineering,

CrossTalk—September/October 2015 13

SUPPLY CHAIN ASSURANCE

SSE, and cybersecurity practice in the field, among others. The
JFAC will work with and build upon these foundational activities
to strengthen and promote trust and assurance in defense sys-
tem hardware and software throughout the acquisition life cycle.

Promoting Trust and Assurance
In establishing its relationships with defense acquisition pro-

gram managers and other stakeholders, the JFAC is committed
to the following principles:

• A program’s decision to participate in JFAC activities should
be based on the need to bring about real and measurable improve-
ment in the levels of trust and assurance for the program or system
under development, throughout the life cycle of the program.

• The JFAC staff will seek to understand and adapt existing
processes for providing SwA and HwA services to the programs
to reduce the independent creation or reinvention of new pro-
cesses and to control cost by blending-in best practices.

• The program’s SwA and HwA needs should be specific, defin-
able and measurable, and the assistance to be rendered by the
JFAC should be within its established scope and set of capabilities.

• The JFAC will concentrate on identifying specific SwA and
HwA areas of interest or concern that may not have been suffi-
ciently addressed by program managers and other stakeholders.

• Although the JFAC’s purpose is to share information, the
JFAC does not intend to maintain sensitive information from
programs and has established safeguards to protect sensitive
program information against unauthorized release. The JFAC will
share information only with those who have appropriate clearanc-
es, a need to know, and a responsibility for ensuring successful
support and outcomes for the program and its stakeholders.

Supporting Needed Research and Technology
Development

The JFAC is already making a positive difference in how the
DoD advances SwA and HwA interests. As part of its initial as-
sessment of existing SwA and HwA capabilities and gaps, the
JFAC working groups identified several Department-wide needs
for further research and technology development for SwA and
HwA interests and concerns. The working groups recommended
several technology development task proposals to the JFAC
Steering Committee, which in turn approved and allocated fund-
ing. The results of these efforts will further the state-of-the-art
for SwA and HwA facilities and organizations within DoD.

The JFAC Steering Committee also has allocated funding for
analyses of SwA and HwA tools, techniques, and process. Tools
such as the State-of-the-Art Resource (SOAR) for SW and HW,
and the SOAR Matrix for existing SwA, provide guidance for
selecting and using automated assurance tool sets across the
DoD acquisition life cycle. The Steering Committee allocated
funding to maintain and continue to improve the SOAR and
other products of these DoD analyses for use by programs.

Engaging Other Communities of Interest and Practice
Moving forward, it is expected that the JFAC will continue to

expand responsibilities to the full scope of the charter, includ-
ing fostering closer cooperation with the academic community,

private industry, and other federal government departments and
agencies. Since R&D is a key component of JFAC operations,
JFAC leaders will continue to identify, work with, and promote
organizations dedicated to advancing innovative solutions for
SwA and HwA inspection, analysis, detection, assessment, and
remediation tools and practices.

Conclusion
DoD is establishing a joint federation of capabilities to support

trusted defense systems and ensure the security of software
and hardware developed, acquired, maintained, and used by the
Department. As it continues to mature and develop, the JFAC will:

• Identify, operationalize, and institutionalize the Department’s
SwA and HwA capabilities in support of program management
offices and other stakeholders.

• Evaluate the need for and impact of DoD investments in
support of various SwA and HwA needs and interests.

• Collaborate across the DoD to influence R&D investments
and bridge gaps in SwA and HwA capabilities.

Interested organizations are encouraged to contact the au-
thors for more information about the JFAC.

1. Deputy Secretary of Defense. Policy Memorandum (PM) 15-001–Joint Federated
Assurance Center (JFAC) Charter. Washington, D.C.: Department of Defense, Febru-
ary 9, 2015. <http://www.acq.osd.mil/se/docs/JFAC-Charter-Signed-9Feb2015.pdf>

2. Section 937of Public Law 113-66, National Defense Authorization Act for Fiscal
Year2014. 113th Congress, December 26, 2014.<https://www.congress.gov/bill/113th-
congress/house-bill/3304/text#toc-H68884858A3434A2A92CC2F59FEC83EB6>

3. Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE)).
Program Protection Plan Outline and Guidance. Version 1.0. Washington, D.C.:
DASD(SE), July 2011. <http:/ /www.acq.osd.mil/se/docs/PPP-Outline-and-
Guidance-v1-July2011.pdf>

4. Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE)). Pro-
gram Protection Plan Evaluation Criteria. Version 1.1. Washington, D.C.: DASD(SE),
February 2014. <http://www.acq.osd.mil/se/docs/PPP-Evaluation-Criteria.pdf>

Tom Hurt is the Deputy Director for Soft-
ware Engineering and Software Assur-
ance, ODASD(SE). He is the DoD lead for
planning, development, and establishment
of the JFAC.
Phone: 571-372-6129
Email: thomas.d.hurt.civ@mail.mil

Ray Shanahan is the Deputy Director for
Anti-Tamper and Hardware Assurance,
ODASD(SE). He is the DoD HwA lead
supporting planning, development, and
establishment of the JFAC.
Phone: 571-372-6558
Email: raymond.c.shanahan.civ@mail.mil

ABOUT THE AUTHORS

REFERENCES

mailto:thomas.d.hurt.civ@mail.mil
mailto:raymond.c.shanahan.civ@mail.mil
http://www.acq.osd.mil/se/docs/JFAC-Charter-Signed-9Feb2015.pdf
https://www.congress.gov/bill/113th-congress/house-bill/3304/text#toc-H68884858A3434A2A92CC2F59FEC83EB6
https://www.congress.gov/bill/113th-congress/house-bill/3304/text#toc-H68884858A3434A2A92CC2F59FEC83EB6
https://www.congress.gov/bill/113th-congress/house-bill/3304/text#toc-H68884858A3434A2A92CC2F59FEC83EB6
http://www.acq.osd.mil/se/docs/PPP-Outline-and-Guidance-v1-July2011.pdf
http://www.acq.osd.mil/se/docs/PPP-Outline-and-Guidance-v1-July2011.pdf
http://www.acq.osd.mil/se/docs/PPP-Evaluation-Criteria.pdf

14 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

1. Introduction
During the last 60 or so years, the classical Systems Engi-

neering (SE) and Program Management (CSEPM) approach has
evolved significantly, driven by two powerful forces: the uncom-
promising need for reliable system-level (including all sub-
systems) performance, and the inefficient government weapon
acquisition practices. The evolution yielded a number of critical
unintended consequences in CSEPM, including a shift from
“great engineering” to “bureaucracy of artifacts”, relying on mas-
sive outsourcing and inefficient mission assurance that involves
premature requirement development, allocation and massive
and costly requirements instabilities. The programs practicing
CSEPM tend to achieve high levels of program success (e.g.,
80 successful space launches in the U.S. Air Force [12]), but
achieve this at the expense of notoriously costly and long (years
and even decades) development programs, not infrequently with
reduced performance.

Premature Allocation of
Program Requirements
to Suppliers
Bohdan W. Oppenheim1,2, Loyola Marymount University

Abstract. The paper presents a discussion of the difficulties of formulating
stable requirements early in complex engineering programs, and the severe
consequences on program execution. The problems are caused by the need to
seek political and funding support for the program. Formal classical Systems
Engineering (SE) and Program Management (CSEPM) methodology is based on
the assumption that the knowledge to anticipate all interfaces and create good
requirements exists early in the program, and it is only a matter of working out
the details to build extremely complex devices such as satellites, aircraft, refiner-
ies, nuclear power plants and high speed rail. The paper argues that this works
well only for well-understood systems but it breaks down when the knowledge of
what needs to be done still needs to be discovered, which is the case with most
complex systems. In programs that develop new complex systems, the reality
leads to the following Faustian Bargain: “Either develop and anticipate all interac-
tions and requirements early, and allocate them to suppliers when the knowledge
is not yet available, then conduct massive, painful, and cost-and schedule-busting
requirements changes throughout the program; or delay the subcontracting until
the system design is mature, complete and stable, and only then allocate require-
ments to subcontractors, but then risk the program termination because of the
lack of political support and funding.” The paper argues that in order to radically
change this major deficiency of classical Systems Engineering and Program
Management a radical change of the program business model would be needed.

 This study is focused on requirements because they play
a critical role in modern program formulation, execution and
value/benefit delivery to customer stakeholders. It can be said
that modern programs are driven by requirements. Yet, experi-
ence from complex programs such as satellite, spacecraft, ship,
nuclear power plant, high speed rail, city infrastructure, and
many others demonstrates that formulation of good and stable
requirements is a formidable task and is rarely successful. In
2011 the Government Accountability Office [5] published an
astonishing statistic that on average, 82% of requirements
in recent defense programs are changed over the program
lifecycle. That means that in spite of the huge effort, only 18%
of the requirements released at the program initiation remain
stable, a rather devastating number. This statistic is one reason
for the notorious frustrations with large weapons and infrastruc-
ture programs, including exceeded program cost and schedule,
Nunn-McCurdy reviews3, and even premature program termina-
tion. Clearly, imperfect requirements are not the sole source of
program troubles. Oehmen [9] lists 10 following Major Chal-
lenges in Managing Programs and each of them is capable of
robbing a program of technical and/or business success:

1. Reactive Program Execution
2. Lack of stability, clarity and completeness of requirements
3. Insufficient alignment and coordination of the extended

enterprise
4. Value stream not optimized throughout the entire enterprise
5. Unclear roles, responsibilities and accountability
6. Insufficient team skills, unproductive behavior and culture
7. Insufficient Program Planning
8. Improper metrics, metric systems and Key Program Indicators
9. Lack of proactive management of program uncertainties

and risks
10. Poor program acquisition and contracting practices

Table 1 lists critical performance characteristics of nine major
recent US Government space programs. The table data is based
entirely on numerous GAO reports studied by [13]. The table in-
dicates unstable requirements as a major contributor to program
imperfect performance in seven of the nine programs listed.
Besides unstable requirements GAO identifies the following
other major reasons for program problems: unstable program
funding (which is usually the result of other problems in a given
program), starting the program before technology is sufficiently
mature4, and excessive complexity and features (named “gold
plating of programs”5 by Ashton Carter, then - Secretary of
Defense for Acquisition and Logistics).

It is always desirable to correlate individual causes to program
measures of success. Regretfully, the data quoted in Table 1
represents too small a sample size to allow that. The author was
informed by his high-level contacts that that defense programs
lack meaningful metrics of this kind. For example, government

It is not realistic that all interfaces in a complex system can be anticipated and defined early in
the program. Since all interfaces need be defined in order to write a complete set of requirements,
it follows that it is not realistic to develop good detailed requirements at the program beginning.

“ “

CrossTalk—September/October 2015 15

SUPPLY CHAIN ASSURANCE

programs do not track requirements instability over a program
lifecycle, a critical measure of program quality6. The present
paper is limited to a discussion of program requirements and
related unintended consequences of the CSEPM evolution.

2.0 Unintended Emerging Properties of Classical
Systems Engineering and Program Management

2.1 Premature Requirements and Massive Out-
sourcing

Developmental programs suffer from significant pressures to
develop and allocate system requirements prematurely. The pres-
sures are caused by the following two widespread practices:

a. Distribution of system development and production among
as many geographically distributed suppliers as possible, driven
by political pressures to “spread the wealth” in order to secure
broad political support and funding for the program.

b. Overwhelmingly popular corporate policy to “stick to the
system integration and subcontract the rest”, with the vast ma-
jority of system parts built by a complex network of suppliers.

More specifically, prime contractors of modern weapons and
aircraft perform system design, major structural design and sys-
tems integration, and subcontract subsystems and components
to the established vendor base, e.g. Boeing 787, F-35. It is
normal for supplier network that builds a complex system to in-
clude thousands of vendors in four tiers of suppliers. The heav-
ily outsourced and geographically distributed programs make

the program coordination and system integration challenging
and increase the need for excellent CSEPM. In a structure such
as this, contracts, requirements and specifications with sup-
pliers perform a critical role. Requirements and specifications
prescribe the technical performance and interfaces between
multiple parties, and typically fixed-price contracts define the
budgets and schedule for each supplier. This association of re-
quirements with cost and schedule is a large activity of CSEPM.
With such a distributed network of design and production, all
linked by legal and financial contracts, the only way to effectively
produce systems is to develop excellent top-level requirements,
then flow down and allocate them into subsystem requirements,
which then flow down and allocate these requirements into
component requirements and “build-to” specifications. The criti-
cal issue is that politics and funding require that all this activity
be performed early in the program, before detailed knowledge
about the system has been developed. Thus, immature allo-
cated requirements are contracted to the suppliers, and then
the system developers frantically iterate the design and change
the requirements - which is a source of major program instabil-
ity. The critical assumption in this approach is that knowledge
exists early in the program to anticipate all system interfaces
and perform intensive development of requirements, require-
ment allocations to subsystems, and program planning, and
then just execute the program in a single cycle of requirements-
allocation-design-build-integrate-verify-and-validate in order to
deliver extremely complex devices such as satellites, aircraft,

PROG-
RAM

Contr.
Agency

Req's
stable?

Funding
stable?

of
TRL
<<6

Final
Cost
B$

Cost
Growth
%

Schedule
Growth%

of
Nunn-
McCurdy
Reviews

Excessive
complexity?

SBIRS Air
Force

Unstable Unstable 3 18.8 300% 120%
Terminated

4 Yes

GPS IIF Air
Force

Unstable Unstable 0 2.6 257% 133% 1+ No

GPS III Air
Force

Stable Stable 0 4.2 2% 40% 0 No

GPS
OCX

Air
Force

Unstable Unstable 14 3.695 28% 50% N/A Yes

MUOS Navy Stable Stable 1 7.3 6% 20% 0 No

JMS Air
Force

Unstable N/A N/A N/A N/A 50% N/A Yes

SBSS Air
Force

Unstable Stable 5 0.922 178% 60% 0 No

AEHF Air
Force

Unstable Stable 11 14.372 154% 150% 3 No

NPOESS Air
Force,
NOAA,
NASA

Unstable Stable 13 13.162 122% Terminated 2 Yes

!Table 1. Performance of Selected Major U.S. Space Programs [13]

16 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

refineries, nuclear power plants and submarines, and it is only a
matter of providing enough resources to work out the iterations
and details to create the needed system. The reality is that such
formal techniques are effective only if designing a commodity for
which significant legacy knowledge is available, but they break
down when the knowledge of what needs to be done to write
good requirements is lacking in early program phases, or the
requirements are poorly formulated7. In this rigid system of thou-
sands of fixed-price contracts with different suppliers in all tiers,
any change of top-level requirements must be flowed down into
all relevant suppliers and the contracts re-negotiated, typically
with large delays, cost growth, or compromised performance in
system development. The requirement verification and validation
at all levels are the main tools of mission assurance in CSEPM.
Unstable requirements and contested verifications are the noto-
rious cause of arguments and legal actions between buyers and
suppliers in the supply networks.

When a complex program starts with a large number of top-lev-
el requirements (and the recent trend is for increasing numbers,
counted in low thousands), and when the technical knowledge of
what is needed evolves over time slower than massive contracts
with suppliers, the program instabilities cause significant “brute-
force” iterations, information churning and thrashing due to the
program pressures to keep requirements and test plans consis-
tent – which tends to drive large cost and duration of complex
programs. Almost all large governmental weapons programs
demonstrate this behavior. The 82% of typical requirements being
unstable mentioned earlier manifests that the single-pass execu-
tion of the classical SE process is not practical.

Hart-Smith [6]8 presented two additional powerful and well-
substantiated arguments against massive outsourcing. Firstly,
he documented the fact that outsourcing tends to outsource
profits from a prime contractor to its subcontractors because
subcontractors operate under fixed-price contracts; therefore
the prime contractor has to absorb the costs of any design and
requirement changes. Secondly, massive outsourcing introduces
massive technical problems in system integration. This paper
became quite controversial during the Boeing 787 aircraft devel-
opment, which took the scope of outsourcing to extreme levels
and experienced severe schedule and cost consequences.

2.2 Omitted Interfaces
In order to develop good requirements, all interfaces within the

system and with system externalities must be identified. NASA
SE Handbook [8] states (selected quotes from page 82):

“The bulk of integration problems arise from unknown or un-
controlled aspects of interfaces. Therefore, system and subsystem
interfaces are specified as early as possible in the development
effort. Interface specifications address logical, physical, electrical,
mechanical, human, and environmental parameters, as appro-
priate....Interface specifications are verified against interface
requirements...In verifying the interfaces, the system engineer
must ensure that the interfaces of each element of the system or
subsystem are controlled and known to the developers.”

With n elements in the system, there are n(n-1)/2 possible
one-to-one interfaces. A typical space vehicle or craft has tens of

thousands of elements. This alone makes the interface definition
effort formidable, as each interface is needed to write good speci-
fications. Practitioners of SE anticipating interfaces understand
the trepidation question “have we included all of them?” - knowing
that even one omitted interface may cause fatal failure.

Particularly challenging are the interfaces involving humans.
Armstrong, [1] stated that “human beings are naturally wicked9;
therefore interfaces with humans are inherently wicked.” In ad-
dition, most of the interfaces traditionally analyzed in technical
systems are of the first order, with higher-order effects poorly
understood and ignored. Two dramatic examples come from the
two Space Shuttle tragedies. In the Challenger case, engineers
understood that the rubber O-rings in the solid motor boosters
must not be used in cold weather. They ignored the second-order
human interface between the O-rings and the Shuttle flight
management. The managers did not appreciate the risk of cold
weather and ordered the flight, which led to the catastrophe, [2].
In the Columbia case, the interface between the foam covering
the cryogenic tank and the airflow, as well as the secondary effect
of the foam hitting and damaging the orbiter wings were poorly
understood and ignored. The subsequent investigation deter-
mined that “the foam did it, the culture allowed it”, [3]. Both above
interfaces involving “management” and “culture” qualify as “wicked
human interfaces.” These interfaces were missing because the
system was too complex to provide good insight and good under-
standing early in the program. And the more complex the system,
the less knowledge is available just when it is needed.

It is not realistic that all interfaces in a complex system can be
anticipated and defined early in the program. Since all interfaces
need be defined in order to write a complete set of require-
ments, it follows that it is not realistic to develop good detailed
requirements at the program beginning.

2.3 Model Based Systems Engineering is not the So-
lution for the Interface and Requirements Instability

The recently introduced elegant Model Based Systems
Engineering (MBSE) approach [7;4] strongly automate and
facilitate interface and requirements management, dramatically
reduce the time, cost, error rate and pain of the SE process, and
offer a number of other significant benefits, but MBSE is a tool
of CSEPM and suffers from the same fundamental problems
as the CSEPM: it cannot assure that all interfaces have been
properly included, particularly the “wicked” ones. MBSE can help
in identifying possible interfaces by making the n-squared matrix
easier to manage, but cannot fill in the insightful details in each
matrix cell. That task is still left to the experience and intuition
of engineers. The problem is that the experience and intuition
work well only for well-understood systems. It is not realistic that
all interfaces in a new complex system can be anticipated and
defined early in the program.

2.4 Bureaucracy of Artifacts
Another unintended consequence of the massive outsourcing

is the complexity of the effort needed to coordinate development
and production among a large number of parties. CSEPM solves
the problem by having different organizations create Interface

CrossTalk—September/October 2015 17

SUPPLY CHAIN ASSURANCE

Control Documents (ICD) to document the interfaces among the
program and system elements and coordinate the development.
The ICDs are often complex documents that require months of
work by tens of individuals each. Often, because of this long time
scales, an ICD turns out to be obsolete on arrival, because system
changes have taken place while the ICD was being created.
Some programs spend years and significant treasure on such
information churning. Instead of spending program effort and time
on technical system optimization, program employees create mas-
sive ICDs. For this reason, CSEPM is said to have deteriorated
from the early emphasis on “great engineering” to unintended
“bureaucracy of artifacts.”

2.5 Faustian Bargain

To summarize, the critical problem present in practically all
programs creating complex systems is that the knowledge
about the system which is necessary to define the top level
requirements and their allocations is not available until both
the system design and program are quite mature, but this is in
conflict with political support, funding priorities, and outsourc-
ing trends of programs. This leads the CSEPM to a “Faustian
Bargain” described in Figure 1, of two equally bad alternatives,
which is the critical unintended emerging characteristic of the
CSEPM evolution during the last 40 years.

3.0 The Remedy
Let us accept that in the present climate of large government

contracts the political and funding pressures require the practice
of “spreading the wealth” among massive number of geographi-
cally distributed suppliers, otherwise the program risks the lack
of funding. This, however, should not mean that premature re-
quirements and specifications must be allocated to the suppliers
before the design is mature and stable enough, which is bound
to cause massive requirement and program instability. Quite the
opposite: the prime contractor should perform complete system
development and design to the level of “built-to package”, and
only then allocate the requirements, interfaces and production
specifications to the suppliers. The proposed remedy is to create
at the program beginning preliminary but binding agreements
with suppliers for future work, thus assuring political support
and funding for a new program, but to hold off with passing
detailed specification to them until the design, interfaces, and
the allocated requirements and specifications are fully mature,
optimized and stable. The agreements should include promis-
sory notes defining a minimum level of effort to be defined at a
later date. This way, the hugely destructive requirements instabil-
ity will be avoided, and programs will be enabled to execute
predictably, stably and at minimum cost and schedule. Further,
completing the design with full freedom from the contracts with
suppliers is conducive to system optimization.

!

Alternative* 1* (CSEPM):! Anticipate,* develop* and* formulate* all* system* interfaces* and* top5level* requirements,* then*
allocate*them*into*subsystems*and*components,*and*sign*fixed*price*contracts*with*numerous*suppliers,*each*defining*
detailed*technical*specifications,*cost*and*schedule*5*and*do*it*all*early*in*the*program*when*the*knowledge*to*do*so*is*
not*yet*available,*driven*by*political*support*for*government*funding.**Then,*as*you*mature*the*system*design,*change*
the*interfaces*and*requirements*as*needed.**Regretfully,*in*this*massively*outsourced*enterprise*this*requires*changes*
in* requirements* to* numerous* subcontractors,* and* a* massive* bureaucracy* of* coordinating* the* work.* * * One* small*
change*at*the*system*level*may*trickle*down*into*hundreds*or*even*thousands*of*subcontracts*requiring*reworking*of*
contracts,*requirements,*costs*and*schedules.**
* Requirements*are*changed*not*only*because*the*knowledge*needed*to*formulate*good*requirements*is*not*
available*when*they*were*initially*documented.***Great*engineering*must*allow*frequent*opportunities*for*creative*
system*5*and*subsystem*5*level*improvements*and*optimizations.**However,*because*the*disturbance*and*overall*cost*
of*this*reworking*of*the*contracts*tends*to*be*severe,*it*usually*occurs*in*traditional*programs*only*when*the*program*
hits*a*major*issue.**As*a*result,*such*program*changes*are*avoided*by*program*management*as*much*as*possible.**A*
consequence*of*this*fact*is*that*large*complex*systems*are*rarely*optimized,*which,*in*extreme*cases,*may*place*the*
system*at*serious*risk.*Oppenheim*[12]*quotes*specific*examples.****
Alternative*2*(largely*theoretical):!!No*subcontracts*are*signed*until*the*design*is*totally*matured,*completely*
defined*and*stable,*including*all*interfaces.**At*this*time*the*final*and*stable*requirements*are*allocated*to*all*levels*of*
subsystems.**Only*then*the*subcontracts*are*signed.**With*stable*requirements,*subcontractors*can*verify*and*deliver*
system*elements*which*can*be*integrated*into*the*system*predictably,*and*program*cost*and*schedule*are*minimized.**
Regretfully,*in*this*approach,*the*political*support*in*the*earliest*program*phases*from*the*broad*supplier*base*is*
missing,*when*it*is*politically*needed*the*most*to*assure*government*funding.**Without*the*funding,*the*program*is*
still*born.***

Figure 1 “Faustian Bargain” of CSEPM

18 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

The proposed remedy, among others, has been captured in
the so-called Lean Enablers for Managing Engineering Programs
(LEfMEP], [9]. The publication includes 326 best practices which
promote value to the customer stakeholders and reduce waste.
The practices have been developed by integrating Systems Engi-
neering, Program Management and Lean. A detailed description
of LEfMEP is beyond the scope of the present paper.

We should also mention a radical solution undertaken by the
privately owned rocket and spacecraft maker SpaceX: to be
totally vertically integrated and not reliant on suppliers, and totally
co-located, [12]. As such, there is no need to allocate and verify
any requirements to suppliers. This business model has demon-
strated extraordinary gains in system quality, development time
and cost, but it is not practical to apply it to large government pro-
grams which inherently involve the “spreading the wealth” policy.

The system design should be performed by co-located teams
with towering competence in the domain. If outside expertise is
needed for the design, it should be brought into the team, rather
than subcontracted out. Hart-Smith presents ample evidence of
the destructive impacts on program health and system integration
if system design is subcontracted out in pieces. Under no circum-
stances should the early part of system design, when the need
for coordination is the strongest, be subdivided and outsourced
to numerous vendors. Doing so is equivalent to cutting one’s
brain into pieces, sending them out to remote vendors, and then
expecting that the pieces will function as a working brain.

4.0 Summary and Conclusions

Formal classical SE and PM (CSEPM) methodology is based
on the assumption that the knowledge to anticipate all interfac-
es and create good requirements exists at the program initiation,
and it is a matter of working out the details to build extremely
complex devices such as satellites, aircraft, refineries, nuclear
power plants and high speed rail. This works well for well-
understood systems but it breaks down when the knowledge of
what needs to be done still needs to be discovered, which is the
case with most complex systems. In real programs that develop
complex systems, the reality is more reminiscent of the “Faus-
tian Bargain: “Either develop and anticipate all requirements and
interactions early, when the knowledge is not yet available, and
then conduct massive, painful, and cost-and schedule-busting
requirements changes throughout the program; or delay the
subcontracting until the system design is mature, complete
and stable, and only then allocate requirements to subcontrac-
tors, but then risk the program termination because of the lack
of political support and funding.” As described in the text, the
average number of requirements changes in large programs is
82%, which indicates that the first path dominates in industry.
This Faustian Bargain is the unintended emerging characteristic
of the CSEPM evolution during the last 60 years, driven by the
geographical distribution of programs among a vast number of
suppliers, which, in turn, is motivated by the politics of “spread-
ing the wealth” and assuring program funding.

The paper identified other myths of modern CSEPM, includ-
ing the assumption that all system interfaces can be anticipated
early; and the naïve belief that distribution of design and produc-

tion over a massive network of suppliers can be effectively coor-
dinated with massive Interface Control Document bureaucracy.

The unintended evolution of CSEPM continues to worsen as
the complexity of modern systems increases at significant rates.
The constant dynamic of need, innovation and change makes it
increasingly improbable that detailed and stable requirements
can be developed at a program’s initiation. This observation
applies not only to space and national security programs but to
a vast array of other complex government and commercial tech-
nology and socio-technological programs, such as cyber security
systems, finance, internet communication, energy, nuclear waste,
education, global warming, transportation, medical systems, and
many others. In many of these programs the rational approach is
to delay subcontracting specifications until the system design is
mature and optimized, and requirements are stable. In addition,
the design should be handles by a co-located team for ease of
coordination and optimization.

The high cost and schedule penalty of renegotiating sub-
contracts in order to accommodate changing requirements and
system optimization are not the only arguments against massive
subcontracting. As [6] discussed from the perspective of a prime
contractor, two other reasons are that massive outsourcing of
value creation to numerous suppliers tends to outsource profits
from a prime contractor to its suppliers, and introduces massive
problems in system integration by the prime. The Boeing 787 pro-
gram is an excellent example of highly excessive subcontracting.

The remedy proposed in the paper is to create at the program
beginning a preliminary but binding agreements with suppliers
for future work, thus assuring political support and funding for a
new program, but to hold off with the passing of detailed speci-
fication to them until the design, interfaces, and the allocated
requirements and specifications are fully mature, optimized and
stable. The remedy, among others, has been captured in the
so-called Lean Enablers for Managing Engineering Programs
(LEfMEP], [9]. This approach should vastly increase program
efficiency and weapon affordability.

Acknowledgement
The original study on which this paper was based was per-

formed under the Project Management Institute (PMI) contract
14108 and published in [12]. The author is grateful to Mr. Ste-
phen Townsend of PMI for his permission to include long frag-
ments from the study in the present paper. The author wishes to
thank Mr. John Muratore of SpaceX for generous sharing of the
information which was used in the PMI study and from which
the present paper strongly benefitted.

CrossTalk—September/October 2015 19

SUPPLY CHAIN ASSURANCE

Bohdan “Bo” W. Oppenheim is a Professor of Systems Engineering at Loyola Marymount University in Los
Angeles, and founder and co-chair of INCOSE Lean Systems Engineering Working Group, the largest Group
of INCOSE. He co-led the project developing Lean Enablers for Systems Engineering (LEfSE), and served as
an expert in the joint INCOSE-PMI-MIT project developing Lean Enablers for Managing Engineering Programs,
integrating Lean Systems Engineering with Lean Project Management. Dr. Oppenheim authored the book Lean
for Systems Engineering with Lean Enablers for Systems Engineering (Wiley, 2011), co-authored The Guide
to Lean Enablers for Systems Engineering (PMI, INCOSE, MIT-LAI, 2012), and co-authored Lean for Banks;
Improving Quality, Productivity and Morale in Financial Offices. He worked for five years at Northrop, four years
at Aerospace Corporation, and consulted numerous defense and aerospace companies in the U.S. and Europe.
His engineering degrees include Ph.D. from Southampton, U.K.; Graduate Engineer’s Degree from MIT; MS
from Stevens Institute of Technology; and B.S. (equiv.) from Warsaw University of Technology in Aeronautics.
His industrial experience spans space, offshore, mechanical engineering and software, including several major
aerospace and commercial programs. His credits include five books, numerous journal publications, $2.5
million in externally funded grants, and a 40-year industrial experience. He served on the teams honored with
two Shingo Awards (2012 and 2013), and INCOSE Best Product Award (2010), as well as INCOSE Service
Award (2014) INCOSE Fellow, 2015. The author published two former articles in CrossTalk.

1. Professor of Systems Engineering, Loyola Marymount University, Los Angeles,
boppenheim@lmu.edu. First submitted December 7, 2014.

2. This paper is based on a larger study [12].
3. A Nunn-McCurdy review is a mandatory congressional review for viability of a

program when it exceeds 25% growth from its original cost.
4. The effect of contracting a program before it is ready from the technology readiness point

of view was published in [11]. Programs are not supposed to proceed to the so-called
Milestone B (design) unless all technology items are at Level 6-7 or higher. Yet, for
expediency reasons many programs are contracted with immature TRL. (Wikipedia page
<http://en.wikipedia.org/wiki/Technology_readiness_level> defines the TRL scale).

5. “Gold plating” refers to the program or system features and options which are
excessive and unnecessary.

6. At the beginning of this study, a high-level manager from one of the Federally
Funded Research and Development Centers supporting the U.S. Air Force Space
and Missile Command offered staff time and budget to extract statistics on stability
of requirements over program life cycle in major government space programs.
After months of trying, it turned out such metrics are not collected and cannot be
obtained without major effort.

7. Examples of bad requirements include sloppy, unclear, or incorrectly formulated
requirements; not contributing to program value/benefit; mutually conflicted;
parochially-motivated, not applicable to the system (e.g., the well-known case of
submarine-relevant requirements being inserted into a spacecraft program); “gold-
plated”; and the requirements that mandate that a particular subsystem design be
included in the system, thus making system optimization difficult. Ideally, a rigorous
independent review of all requirements should be performed after they are collected
and before the requirements are released for RFP or contract. Highly competent and
independent reviewers should catch all instances of unneeded and faulty require-
ments, catch the missing interfaces, push back on “gold plated” requirements, and
demand that all these deficiencies be corrected before the program proceeds to the
RFP or contract. Unfortunately, this is hardly ever performed.

8. The paper is labeled “Boeing Proprietary”, however, it was leaked and pub-
lished on the Seattle Times webpage <http://seattletimes.nwsource.com/AB-
Pub/2011/02/04/2014130646.pdf>, therefore now exists in the public domain.

9. In this context, “wicked” refers to “unpredictable, mischievous.”

1. Armstrong J. R., “System Integration: He Who Hesitates is Lost”, INCOSE Int.
Symp., Las Vegas, 2014

2. Challenger Commission, Report to the President by the Presidential Commission on
the Space Shuttle Challenger Accident, June 6th, 1986, Washington, D.C.

3. Columbia Accident Investigation Board (CAIB) Final Report on Aug. 26, 2003.
4. Friedenthal S., Moore A., Steiner E., Practical Guide to SysML, Second Edition: The

Systems Modeling Language, The MK/OMG Press, 2012
5. GAO, DEFENSE ACQUISITIONS, “Assessments of Selected Weapon Programs”,

GAO-11-233SP, 2011.
6. Hart-Smith L. J., “Out-Sourced Profits - The Cornerstone of Successful Subcontract-

ing”, Boeing Third Annual Technical Excellence (TATE) Symposium, St. Louis, MI,
February 14-15, 2001

7. Long D., Scott Z., “A Primer for Model-Based Systems Engineering“, VITECH, Apr 4, 2012
8. NASA Systems Engineering Handbook, NASA/SP-2007-6105 Rev 1
9. Oehmen, J. Editor, The Guide to Lean Enablers for Managing Engineering Programs,

PMI-INCOSE-MIT LAI, 2012
10. Oppenheim, B. W., Lean for Systems Engineering with Lean Enablers for Systems

Engineering, Wiley & Sons, 2011.
11. Oppenheim B. W., “Improving Affordability: Separating Research from Development

and from Design in Complex Programs”, Crosstalk Journal, 25th Anniversary Issue,
V. 26, No. 4, July/August 2013.

12. Oppenheim B. W., “Program Requirements: Complexity, Myths, Radical Change, and
Lean Enablers”, Project Management Institute, Paper 14108, 2015.

13. Pabst R.G., “Analysis of Management Practices in U.S. Space Programs using GAO
data, and Mapping to Lean Enablers”, Systems Engineering Capstone Project, Loyola
Marymount University, Los Angeles, 2014

14. Wikipedia, 2014a: <http://en.wikipedia.org/wiki/Technology_readiness_level>
15. Wikipedia, <http://en.wikipedia.org/wiki/Load_testing> last accessed June 21, 2014

ABOUT THE AUTHOR

REFERENCESNOTES

mailto:boppenheim@lmu.edu
http://en.wikipedia.org/wiki/Technology_readiness_level
http://seattletimes.nwsource.com/AB-Pub/2011/02/04/2014130646.pdf
http://seattletimes.nwsource.com/AB-Pub/2011/02/04/2014130646.pdf
http://seattletimes.nwsource.com/AB-Pub/2011/02/04/2014130646.pdf
http://en.wikipedia.org/wiki/Technology_readiness_level
http://en.wikipedia.org/wiki/Load_testing

20 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

“Speed of action in cyberspace is critical to maintaining
the advantage against adversaries and disruptions to service.
Processes must be in place to facilitate this speed of action to
allow for operational commander’s mission needs while balanc-
ing security. The adoption of RMF hopefully further streamlines
the critical accreditation of systems. One objective being to give
commanders an ability to manage risk in cyberspace in a way
that makes sense as in other warfighting domains.”
-Colonel David W. McMorries (former Commanding Officer,
Marine Corps Network Operations and Security Center)

RMF Transition
The DoD transition to the RMF is an evolution in the DoD

Cybersecurity2 program to address the changing risk to informa-
tion systems. RMF is a Federal standard and DoD’s adoption
of it will enable greater interoperability, knowledge sharing,
and reciprocity across the Federal government. Using a more
robust system lifecycle approach for risk assessment, along
with a more scrutinized continuous monitoring program, the
Marine Corps can react more quickly and efficiently to changes
within our Cyber environments. The RMF better aligns the DoD
Cybersecurity language and practices with guidance provided
by the National Institute of Standards and Technology (NIST)
consistent for Federal information systems.

Although guidance from the Marine Corps regarding the tran-
sition to the RMF has not been released, the DoD has begun to
update key instructions related to Cybersecurity under the RMF
as presented in Table 1.

Figure 1 illustrates external publications used as the basis for
the revised Cybersecurity Instructions.

From DIACAP to RMF
A Clear Path to a New Framework
Major Henry R. Salmans III, USMC, Retired
Andrew C. Tebbe, MCICOM, USMC
William J. Witbrod, Computing Technologies, Inc.

Abstract. Department of Defense Instruction (DoDI) 8510.01, dated March 12,
2014, announced the adoption of the Risk Management Framework (RMF) for
Department of Defense (DoD) Information Technology. The National Institute of
Standards and Technology (NIST) Special Publication 800-39 fully articulates
the RMF process which is a key input into DoDI 8510.01.
This article highlights what the transition from Department of Defense Information
Assurance Certification and Accreditation Process (DIACAP) to “the RMF” means
to Marine Corps “Information Assurance” and the DoD community at large.1

Figure 1: DoDI Publication Dependencies4

Table 1: RMF DoD Instructions

DoDI Title Reissue Date
8510.01 Risk Management Framework (RMF) for DOD Information Technology 03/12/2014
8500.01 Cybersecurity3 03/14/2014

DoDI$8500.01

DoDI$8510.01

NIST$800-39
Information$
Security$Risk

NIST$800-53
Controlsand

Implementation

NIST$800-37
RMF

NIST$800-137
Continuous$
Monitoring

NIST$800-53A
Control$

Assessment$
Procedures

NIST$800-30
Risk$Assessment

CNSSI$1253
Security$

Categorization

RMF

!

The Knowledge Service Website5, managed by the Depart-
ment of the Navy for DIACAP, will be updated to reflect the
transition to the RMF. The updated site serves as the authorita-
tive source on guidance for implementing and executing the
RMF according to the DoD Instructions and includes tools and
templates for RMF execution and production of key artifacts.

Changes in Framework
Both DIACAP and RMF seek to identify and manage informa-

tion system (IS) risks associated with system vulnerabilities and
adversary threats. Vulnerabilities primarily consist of weak IS
security procedures or internal controls. Threats exploit those
vulnerabilities and include environmental disruptions, system or
human errors, as well as purposeful attacks. The goal of both
DIACAP and RMF is to mitigate vulnerabilities to an acceptable
level of risk. Cybersecurity experts and practitioners transition-
ing from DIACAP will appreciate that the shared goal of risk
management is equally true under RMF. Their knowledge and
expertise, accrued under the previous framework, will be useful
if not critical to the transition to this new paradigm.

Terminology
DoDI 8500.01 adopts the term “cybersecurity” throughout the

DoD replacing “Information Assurance”. The traditionally used
Certification & Accreditation (C&A) process will be referred to

CrossTalk—September/October 2015 21

SUPPLY CHAIN ASSURANCE

as Assessment & Authorization (A&A) under RMF. Cybersecu-
rity role titles have been changed, and in some cases responsi-
bilities combined or divided among roles as presented in Table 2.

Security Controls
Security Controls, the cornerstone of any Cybersecurity pro-

gram, conform to a new set of features and requirements for the
RMF. Similar to the function of DoDI 8500.2 under DIACAP, the
security control descriptions under the RMF are found in NIST
Special Publication (SP) 800-53 (at time of this writing the
publication was under Revision 4). The security controls within
the publications that an IS is required to adhere to depends on
the system categorization.

The process for determining an IS’s Categorization has
changed under RMF. DIACAP uses Mission Assurance Catego-
ry levels (MAC I, II, III) to define the requirements for availability
and integrity. The Classification Level (Classified, Sensitive, or
Public) determines the confidentiality requirements. The com-
bination of one MAC level AND one Classification level results
in the IS’s Categorization (i.e. MAC III, Sensitive). The RMF pro-
vides an evaluation of the three security objectives, Confidential-
ity, Integrity, and Availability individually and an impact level (Low,
Moderate, or High) is assigned to each objective (i.e. Confidenti-
ality= Moderate; Integrity= High; Availability= Low). The impact
is based on what affect a realized threat will have on the system.
The Committee on National Security Systems Instruction
(CNSSI) No. 1253 directs the RMF system categorization.

Table 2: Security Roles Terminology Change

Figures 2a and 2b: DIACAP and RMF System Categorization

DIACAP Role RMF Role
DoD Chief Information Officer (CIO) DoD Chief Information Officer (CIO)
Principal Accrediting Authority (PAA) Principal Authorization Official (PAO)
DoD Component CIO DoD Component CIO

Senior Information Assurance Officer (SIAO) Senior Information Security Officer (SISO)

Principal Accrediting Authority (PAA) &

Designated Accrediting Authority (DAA)6

Authorizing Official (AO)

Program Manager (PM)/

Systems Manager (SM)

Program Manager (PM)/

Systems Manager (SM) or

Information System Owner (ISO)

Information Assurance Manager (IAM) &

Information Assurance Officer (IAO)

Information System Security Manager (ISSM)

Information Assurance Manager (IAM) &

Information Assurance Officer (IAO)

Information System Security Officer (ISSO)

Certifying Authority (CA) & Validator Security Control Assessor (SCA)

!

DIACAP&

Information*System*
Categorization

MAC-I MAC-II MAC-III

Classified Sensitive Public

OR

OR

OR

OR

=AND
MAC-III
Sensitive

&!
RMF!

!

22 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

A pronounced distinction between the DoDI 8500.2 catalog
and NIST SP 800-53 is that it defines controls to mitigate
risk in more detail. As a result, the IS’s under the RMF have
more controls required in order to meet the more well defined
security requirements. In many cases the IS’s could require
triple the amount of controls under the RMF methodology. For
example, the security requirements covered in DIACAP control,
“Account Control” (IAAC-1), maps to multiple 800-53 controls,
“Account Management” (AC-2), “Personnel Termination” (PS-
4), and “Personnel Transfer” PS-5, as shown in Figure 3.

Although the number of required controls increases
under RMF, because they are written at a more granular
level, that does not signify an increased workload. The real-
ity is that the overall security requirements are consistent
between the two frameworks.

Artifacts
RMF reduces the artifact generation and submission process

by removing the need for two separate package submissions.
Under the RMF, artifacts have been streamlined leaving only
one package per IS (not a Comprehensive and Executive pack-
age as with DIACAP). The three required artifacts under the
RMF are the Security Plan, Security Assessment Report, and
the Plan of Action and Milestones (POA&M). The relationship
between the DIACAP Package artifacts and the RMF Security
Authorization Package artifacts is illustrated in Figure 4.

Note that under the DIACAP model, while not required, it
was common for an organization to have a formalized Security
Plan at the discretion of the ISSM/ISSO. For the Cybersecu-
rity teams developing a program under the RMF, the Security
Plan is the cornerstone artifact in the program.

The Security Plan7 provides an overview of the system, its
security requirements and details the security controls in place.

“The fact that the Security Plan is the cornerstone of the RMF
effort is an improvement over the DIACAP model. We needed
to streamline this process and will need to evaluate how well
the RMF works over time to see if we have it right. Just like we
need continuous monitoring of our security efforts, we also need
a periodic evaluation of our processes to ensure they are simple,
understandable and executable. The security of our data systems
is a daily battle that requires agile processes to meet the ever-
changing cybersecurity demands.” -Colonel Gregory T Breazile
(Director, Cyber & Electronic Warfare Integration Division)

Continuous Monitoring
A component within the Security Plan receiving a new empha-

sis under the RMF is the Continuous Monitoring Strategy (CMS).
CMS provides system-level strategy for evaluating the effective-
ness of security controls and the observing of any changes to
the system and environment. The strategy includes a plan for the
annual assessments of implemented security controls.

The “assessor” must be independent of the IS requiring an
external party to the organization not affiliated with either the
control design or control execution. Other control elements
implemented under the CMS may vary depending on the risk
factors of the IS and the discretion of the ISSM.

Figure 4: Artifact Transition DIACAP to RMF

Figure 3: Example of control requirement granularity change from
DIACAP to RMF

IAAC$1
Account+Control

AC$2
Account+

Management

PS$4
Personnel+
Termination

PS$5
Personnel+
Transfer

RMF
Controls

DIACAP
Control

!

Security)Plan

Security)Assessment)
Report

POA&M

SIP

DIP

POA&M

Validation)Results)/)
Supporting)
Evidence

DIACAP)Scorecard

RMF:)Security)
Authorization)Package

DIACAP)
Package

!

CrossTalk—September/October 2015 23

SUPPLY CHAIN ASSURANCE

Figure 5: Continuous Monitoring Strategy with Example Elements.

!

Figures 6a and 6b: Non-compliant risk determinations

DIACAP&

RMF$

Arethecontrols$
compliant?

No$finding,$risk$
compensated

Determine$
Likelihoodof

Vulnerability$could$
be$exercised$by$

Threat

Determine$Impact$to$
ISifThreatis
exercised.

Determine$other$
effective$controls$in$
placetoreduce$risk

Yes

No Determine$Risk$
Level

HIgh

Medium

Low

SAR

OR

OR

$

Figure 5, illustrates three example elements of a CMS. Ex-
ecuting the CMS becomes critical under the RMF between the
Authority to Operate (ATO) granted and expiration dates.

Along with the Security Plan, the CMS will be scrutinized
and approved by the AO prior to proceeding further with the
RMF. This new scrutiny, early in the RMF, further emphasizes
the enhanced focus of the organization’s continuous monitoring
processes and the importance of identifying and coordinating
resources needed to adequately execute the CMS.

Security Assessment Report and POA&M
The Security Control Assessor (SCA) develops a plan for

executing the Security Assessment, in order to populate the Se-
curity Assessment Report. The Security Assessor’s role and the
security assessment serve the same purposes as the Validator
and validation process did within DIACAP. As in DIACAP every
non-compliant control will have an associated risk level.

The DIACAP risk Categories (CAT I, CAT II, and CAT III) have
been replaced in the RMF with the Security Assessor’s evalu-
ation of several factors determining the risk level. The risk level
factor determination includes an analysis of the vulnerabilities
caused by non-compliant controls and the threats that could ex-
ploit the vulnerabilities. Figure 6 presents the evaluation of non-
compliant controls, different risk designations between DIACAP
and RMF, and where these risk designations are recorded.

24 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

The Validator captures non-compliant controls and risk
determinations in the DIACAP Scorecard. Conversely, the SCA
documents these results within the RMF’s Security Assessment
Report (SAR). Both the DIACAP Scorecard and the RMF SAR
include an assessment of the overall system level of risk as well
and both are required artifacts for an ATO decision.

In the same manner as the Test Plan findings in DIACAP,
any non-compliant controls from the RMF’s SAR carry in to the
POA&M. The POA&M is a key artifact in the authorization package
and the submitter maintains it throughout the system lifecycle.

Authorization Decision
The ISSM submits the Security Authorization Package, con-

taining the Security Plan, SAR, and POA&M, to the AO for an
authorization decision only when all three of these artifacts are
complete. Figure 7 shows the logical progression of these arti-
facts, highlighting that the POA&M cannot be generated without
the SAR which is dependent on the Security Plan.

Figure 7: RMF Security Authorization Package Contents

Security)Plan Security)Assessment)
Report POA&M

!

 Upon review by the AO, the authorization decision is codified
as an Authorization To Operate (ATO), an Interim Authorization
to Test (IATT), or a Denial of Authorization to Operate (DATO).
IATTs should only be granted when an operational environment
or live data is required to complete specific test objectives.
IATT should normally expire in 90 days. Unlike DIACAP, RMF
does not technically allow for an Interim Authority to Operation
(IATO). RMF relies on the convention of issuing an “ATO with
conditions” which must be met within a defined period of time. If
those conditions are not met the AO may issue a DATO.

Reciprocity
An important design of the RMF is to improve efficiencies

through reciprocity. Although the DoD branches followed common
processes under DIACAP, the reissuance of DoDI 8510.01 for
RMF provides explicit guidance on “reciprocity” that was formerly
not as clear. Specifically, the guidance addresses coordination
between deploying ISOs and PMs with receiving ISOs and PMs
throughout the system development and the process for a receiv-
ing organization to accept an ATO. Ultimately, reciprocity increas-
es transparency ensuring that AOs are equipped to make better
informed decisions when accepting an existing ATO.

The transition to RMF enables reciprocity between the DoD
and other Federal agencies. As stated above, the RMF will
adhere to the security requirements under NIST 800-53 which
is used as the Federal Government’s common guidance for
implementing security controls.

Watts S. Humphrey
Software Process Achievement Award

Nomination Deadline: October 15, 2015

Do you know a person or team that deserves recognition for their
process-improvement activities?

The IEEE Computer Society/Software Engineering Institute
Watts S. Humphrey Software Process Achievement Award is
presented to recognize outstanding achievements in improving
the ability of an organization to create and evolve software.

The award may be presented to an individual or a group, and
the achievements can be the result of any type of process
improvement activity.

To nominate an individual or group for a Humphrey SPA Award,
please visit http://www.computer.org/web/awards/humphrey-spa

IEEE Computer Society | Software Engineering Institute

http://www.computer.org/web/awards/humphrey-spa

SUPPLY CHAIN ASSURANCE

CrossTalk—September/October 2015 25

Conclusion
The transition to the RMF allows the Marine Corps to adopt

a framework that dynamically responds to changes in risk. The
RMF aligns itself with NIST publications that remain current in
the face of emerging technologies. Ultimately, the RMF gives the
Marine Corps a Cybersecurity program that is better designed to
support the evolving Information Technology landscape.

Disclaimer
The views expressed are of the authors and do not represent

any official position within the Department of Defense or the
United States Marine Corps.

Acknowledgement
The authors would like to acknowledge LtCol Jeffrey Ham-

mond (USMC), LtCol Michael Cho (USMC, Ret.), LtCol Floyd
Means (USMC, Ret.) Marine Corps Information Technology
Center Site Director, Captain Richard Wolferd (USMC) and Mr.
James Klanke (President Global Project Management Group,
Ltd.), and Dr. Jim Lee (Deputy Cyber Engineering, Marine Corps
Systems Command) for their constructive criticism, comment,
and review. Any errors remain the responsibility of the authors.

1. Though written in the context of the DoD’s adoption of RMF, the authors day to day
work interactions are in direct support of the USMC and the nuances in this article
may reflect or be biased toward that relationship.

2. Cybersecurity as opposed to Cyber Security is the parlance found in DoDI 8500.01;
both terms are used interchangeably in many of the resources we reviewed.

3. Incorporates and cancels DoDI 8500.02, DoDD C-5200.19, DoDI 8552.01, et al.
4. This is a corrected diagram. The original reviewed for this paper shows DoDI

8500.02 as a publication applicable to RMF. It should also be noted that CNSSI 1253
is dependent on NIST 800-53, however under RMF, CNSSI 1253 guidance must be
evaluated first prior to utilizing NIST 800-53.

5. At the time this article was written, the RMF Knowledge Service Website was still
under development. Proposed URL is <https://rmfks.osd.mil>

6. The Marine Corps has already adopted the AO, ISSM and ISSO roles rather than
using the DoD DIACAP terminology of PAA/DAA, IAM and IAO, respectively. The
intention of this table is to be consistent with the DoDI for both DIACAP and RMF as
a specific directive from the Marine Corps for RMF has yet to be released.

7. The RMF ‘Security Plan’ acts as a “road map” that guides reviewers to other important
risk management and security design procedures such as the risk assessment, privacy
impact assessment, system interconnection agreements, contingency plan, configura-
tion management plan, and incident response plan. Once established, the Security Plan
continues to be a dynamic document updated as needed to remain current, presenting
an accurate picture of the ever evolving risk within the environment.

Major Henry R. Salmans III (USMC, Retired) of CSC is a former 4002/0602 Data Systems Officer/Com-
munications Officer. His award winning work includes From Technological Triage To Maturing A Collaborative
Environment (DoD International Command & Control Research and Technology Symposium), The American
Way of War (War On The Rocks) and is an occasional guest writer for Ranger Up and the infamous Rhino Den.
Currently, he advises the Technology Services Organization and the Cybersecurity Council of the Marine Corps
Information Technology Center in Kansas City, Missouri.
Phone: 785-840-7066
Email: henryrsalmansiii@gmail.com

Mr. Andrew C. Tebbe, formerly of COmputing TechnologieS, Inc. (CoTs), is a civilian cybersecurity professional
with the Marine Corps Installation Command (MCICOM) in Kansas City, Missouri, specializing in cybersecurity
compliance and control assessment. Prior to joining MCICOM, he worked as an internal auditor for the USDA
focusing on FISMA and FedRAMP compliance. As an IT security control auditor and consultant, Mr. Tebbe’s
private sector experience was with the public accounting firm KPMG LLP, the U.S. member of the International
Cooperative.
Phone: 816-541-8848
Email: andrew.tebbe@mcw.usmc.mil

Mr. William J. Witbrod of COmputing TechnologieS, Inc. (CoTs) is a Fully Qualified Navy & Marine Corps
Validator working for Installations & Logistics, Headquarters Marine Corps, for the Marine Corps Installation
Command, Facilities Systems Branch in Kansas City, Missouri. Prior to joining CoTs in support of CSC, William
served in the United States Army Signal Corps and held various executive security and audit positions in both
the government and private sectors.
Phone: 913-244-4600
Email: witbrod@gmail.com

ABOUT THE AUTHORS

NOTES

https://rmfks.osd.mil
mailto:henryrsalmansiii@gmail.com
mailto:andrew.tebbe@mcw.usmc.mil
mailto:witbrod@gmail.com

26 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Supply Chain Context
The manner in which we develop complex software and sys-

tems has changed considerably since the dawn of the Internet
age [1, 2]. Much of that change has occurred because software
has become big business. The most recent estimate of the size
of the industry is $407.3 billion per annum, with a 4.8% annual
growth [3]. As a result of the vast increase in the scope of the
marketplace, commercial components are ubiquitous in our in-
frastructure [4]. This is especially true in government where the
Clinger-Cohen Act has directed federal agencies to maximize
their use of commercial-off-the-shelf (COTS) products [5].

COTS applications, especially those that are developed for
commercial purposes, are often vulnerable to exploitation [5].
This is especially true when the unique risks faced by govern-
ment systems are factored in [5]. For instance, the conventional
approach in most organizations is to look for a COTS product1 to
solve some functional need. That choice is understandable, due
to the cost advantage and availability that COTS components
represent [3]. However, implementing these products can repre-
sent a serious security challenge since we rarely have the option
to fully understand what we are buying [6].

More importantly COTS products are typically integrated up
a sourced supply chain, which creates a problem of security as-
surance and control at every level. It is a well-documented fact
that we have lost all visibility into what is going on at the bottom
of that generic chain [7]. So we are left with “trust” as the only
viable option for establishing assurance. But what evidence can
we use to justify the trust? Since market forces favor functional-
ity over security and reliability, the challenges of addressing this
supply chain problem are increasing [6].

Model-Based
Engineering for
Supply Chain
Risk Management
Dan Shoemaker, Ph.D., University of Detroit Mercy
Carol Woody, Ph.D., Software Engineering Institute

Abstract. Expanded use of commercial components has increased the com-
plexity of system assurance verification. Model-based engineering (MBE) offers
a means to design, develop, analyze, and maintain a complex system architecture.
Architecture Analysis & Design Language (AADL), which has tools for model-
ing and compliance verification, provides an effective capability to model and
describe all component units in a sourced product and implement practical mea-
sures for their management and assurance throughout the acquisition life cycle.

It would be valuable to have a formal, well-defined, standard and
systematic means for evaluating the assurance of systems which
may contain security vulnerabilities inserted through insecure infor-
mation and communications technology (ICT) supply chains. That
formal solution is a practical necessity if we ever want to be as-
sured that our adversaries cannot, “destroy power grids, water and
sanitary services, induce mass flooding, release toxic/radioactive
materials, or bankrupt any business by inserting malicious objects
into the (ICT) components that comprise our infrastructure” [8].

The Problem: Why ICT Supply Chain Security is so
Easy to Compromise

Because of the potentially critical impact of insecure supply
chains on the U.S. infrastructure, the General Accounting Office
has placed ICT Supply Chain Risk Management on its annual
“Key Issues, High Risk” list [9]. A primary contributor to security
vulnerabilities is the standard approach used for integration [5].
We no longer build single purpose systems from the ground up
using a conventional design-build-test structure of creating well-
defined components assembled into a predicted whole. Instead,
we integrate a system from existing and reusable components
in a hierarchy that extends up from the modular level through an
increasingly sophisticated larger collection of integrated modules.

Due to the cost advantage the components that we integrate
are obtained through a world-wide ICT supply chain that favors
low cost [4]. In effect our products can be composed of software
artifacts from India, chips and programmed logic from Korea and
small components from Vietnam and China [4, 7]. These compo-
nents were not designed and built to work together smoothly and
effectively, instead they are cobbled together using standardized
interfaces for information passing. These components were not
built to only perform the selected activities needed for a specific
system and may provide a wide range of additional functionality
that supports unintended consequences.

The organization implementing this assembled collection of in-
ternational components needs to ensure consistency in performing
all aspects of supply chain risk management by providing a uniform,
disciplined repeatable assessment that establishes an appropriate
level of trust. One source of evidence would be a means of con-
firming that the practices involved in developing each level of the
final product were consistently executed using a uniform standard
management process starting from the basic components through
to the final assemble within a planned and documented environment.
Another source of evidence would be an assessment of “what could
go wrong in the construction process (i.e., assessing risks), determin-
ing which risks to address (i.e., setting mitigation priorities), imple-
menting actions to address high-priority risks and bringing those
risks within tolerance must be well defined and uniform” [10].

Correct application of these control and assurance activi-
ties requires a detailed understanding of how the product will
be built and the ability to monitor the construction process to
assure security and correctness throughout. That is easier said
than done since the basic component elements for a system are
likely to be complex code segments that are sourced outside of
the direct control of the system manufacturer, who is actually an
integrator of a range of components from many sources.

SUPPLY CHAIN ASSURANCE

Problem Statement: The Weakest Link
Typically, supply chains are hierarchical, with the primary

supplier forming the root of a number of levels of parent-child
relationships. From an assurance standpoint, what this requires
is that every individual product of each individual node within
that hierarchy be secure as well as correctly integrated with all
other components up and down the production ladder. [7].

In the world of software, the locus of assurance is typically in
the manufacturing process rather than the product itself. That is
because the actual product is both too complex, as well as too
virtual to be able to see and control. Ensuring a complex, dis-
tributed process like a supply chain would require a coordinated
set of standard, consistently executed activities to enforce the
requisite level of visibility and control. Yet, because the develop-
ment process is usually occurring in a number of disconnected
global locations, typically at the same time, the requisite level of
understanding needed to assure the security and correctness of
the component is hard to achieve [10].

For effective supply chain risk management, system engineer-
ing staff need to be able to evaluate the likelihood and impact
of a potential vulnerability appearing at any stage in the product
development. This evaluation mechanism is needed in order to
identify appropriate mitigations. Best practice suggests that this
identification and evaluation should take place during the early
acquisition stages, because the form of the final product is being
defined at that point [4, 5]. This challenge for the identification
of potential security vulnerabilities extends the typical system
engineering security considerations beyond the borders of the
acquirer-supplier relationship. In that respect the correctness
and security of the supply chain that comprises the development
environment also impacts security [11]. To address complex sup-
ply chain risks, systems engineers need to be able to analyze the
potential for the components to be exploited or subverted at any
level of the construction process, and then consider the potential
actions that need to be taken in order to detect exploitation and
devise the necessary mitigations to continue to operate [11].

Systems engineers would want to have the ability to identify
potential vulnerabilities early in the system-acquisition process.
This would require that systems engineers be able to fully dictate
the system concepts and critical functions and access paths of the
entire product as it is being built. However, the typical approach in
use today is to simply test for known common vulnerabilities of the
system, supply chain, and development environment when all the
pieces are assembled at integration. These tests are drawn from in-
dustry databases [1, 11], or in the case of the Federal Government
from the Defense Acquisition Guidebook [12]. This is insufficient
to evaluate and assign trust to the end product. It is desirable, in
some manner, to assure each component at the bottom of the sup-
ply chain process and then every successive integration to the final
product. While we may not have the mechanisms to fully address
this need, we can greatly improve current practice.

Utilizing Formal Structured Design Approaches to
Establish Assurance Control

The identification and detailed understanding of all of the out-
sourced units in a supply chain can be an impossible task where

the product might be composed of 10,000 individual compo-
nents at the 4th or 5th level down in the integration process.

The logical way to draw up such a schematic is through a
formal system modeling process, which will uniquely identify
each component at all levels in the hierarchy. Such a modeling
approach, if properly supported by a formal design language
and kept under configuration management control, could create
a very precisely detailed representation of the functional and
security requirements for all components. And that schematic
model would allow for the rational imposition of structured as-
surance activities at all levels in the integration process.

The acquirer must establish specific properties that the integra-
tors must meet in order to satisfy the acquisition contract. If the
system engineers for the acquirer assemble the first level decom-
position of the system into AADL and incorporate the required
properties that each component must contribute to the system into
the model, the planned composition can be formally verified using
available tools. The developer of each component must deliver an
AADL model that establishes the properties of their component
as built along with the actual product. In addition to executing
acceptance testing of the component, the acquiring engineer can
import this decomposition into the original model and confirm that
the expected properties are still met. The result, from an assurance
control standpoint, is the assembly of a complete and explicitly
detailed set of design schematics that can be used to guide the
process of monitoring the award and assurance of the outsourced
work.

Safety-critical verification of cyber-physical systems (CPS) has
benefited from the use of architecture fault modeling capabilities
provided by Architecture Analysis & Design Language (AADL).
Architecture led hazard analysis using architecture descrip-
tion languages (ADLs) such as AADL has become an effective
capability in safety fault management. The cost of successfully
addressing safety compliance has been greatly reduced through
the use of extensions to AADL that automate safety analysis and
produce safety assessment reports to meet recommended prac-
tice standards (such as SAE ARP4761) [16]. AADL is a relatively
well known architectural description language that was first devel-
oped as the Avionics Architecture Description Language [14]. It
was eventually standardized by the Society of Automotive Engi-
neers as AADL [14]. The Software Engineering Institute (SEI) at
Carnegie Mellon University (CMU) has used AADL to effectively
address design verification for the qualities of safety, reliability,
and performance [18, 19]. Other researchers have incorpo-
rated selected attack scenarios into modeling languages (e.g.,
OCL [20], OWL-DL and SWRL [21], and SysML [22]). Avionics
vendors have successfully used formal modeling to ensure safety
properties from components developed by multiple vendors.

Acquirers can leverage these successful capabilities to
address security as well as safety in supply chain risk man-
agement. The AADL modeling process ensures all three of
the requisite criteria for successful management of a system
product under development. These are, understanding, through
modeling, assurance through formal validation and verification
and finally accurate control of the integration of components,
through reference to well-defined baseline expected behaviors.

CrossTalk—September/October 2015 27

28 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Understanding: it is essential to have a detailed description
of the structural elements of the system architecture in order to
enforce assurance. The major problem with ensuring trustworthy
product security at the component level using standard systems
engineering approaches is the inability to precisely document the
behavior of the specific contents of secured products along with
the exact process by which they are built. Consequently, it would
seem impossible to verify that the design requirements and tenets
of best practice have been satisfied for each unit, especially if the
system code has already been written, which is the case with com-
mercial products. However, expected operational properties can
be described and evaluated across the composition. The behaviors
for each component can be formally described using a modeling
language that captures the detail evidence. AADL is supported by
tools that can capture properties about each component as well as
the selected integration mechanisms for each component into the
composition. Assumptions can be checked for consistency across
all components to meet critical system behaviors.

Assurance: The necessary level of visibility for assurance
requires knowing what the code that comprises each component is
supposed to do and how that will affect the assembled whole. The
confirmation of correctness of a complex system is normally pre-
sented in the form of an assurance case [11]. An assurance case is
a well-thought-out argument, which is often represented notionally.
An assurance case proposes and supports whatever claims are
made about a given set of planned behaviors for a system [11]. An
assurance case can be structured as a proof of trustworthiness
based on evidence assembled through a formal model.

The supporting evidence for an assurance case may combine
different kinds of documentation and data to justify its generic
claim [11]. So a structured model of the system architecture,
down to the unit level, is needed to let the engineer confirm
the correctness of each component in the system [11]. In that
respect, the assurance claim starts with the development of a
general statement about a system goal such as an operational
timing requirement. It is then decomposed down to a detailed,
structured system model, which provides the concrete descrip-
tion needed to evaluate the detailed system architecture and
its security properties at all levels in the development process
as well as up and down the supply chain [11]. Claims for supply
chain assurance can also be decomposed into an assurance
case that assigns various desired (and necessarily avoided)
characteristics to each component.

Control: In most approaches for systems engineering, model-
ing and validating of the attributes of a system are typically done
using existing threat modeling and analysis technologies which
are separate from the actual components and known character-
istics of the system. The focus is on the creation of threat models
to inform requirements and development decisions instead of
formally evaluating the system composition to see how well it
addresses the needed assurance. This provides no mechanisms
for verification of delivered results to determine if threat concerns
have been appropriately addressed. Moreover, these models are
typically not maintained or updated throughout the life cycle,
making it difficult to predict the impact of downstream change on
attributes that cut across unit boundaries within the system [13].
AADL provides a means to model expected system behaviors
that address threat concerns and formally verify consistency of
these behaviors in modelled components that are outsourced.

The impact of component decomposition choices, which can
include COTS, open source, and other outsourced subcontractors,
need to become the responsibility of the integrator assigned to
deliver the component to prove that desired system properties are
met. The model of their resulting product must include downstream
alterations made during the coding and even testing stages that
are likely to produce discrepancies between the original design and
its assurance case [13]. If the lower level components can embody
undesired and unanticipated emergent behavior that can propagate
up the ladder as the system evolves to higher levels of integration
[11] this can be identified if the product behavior is appropriately
modeled. Modeled properties must be applied to both component
development and their interconnections.

AADL implements a basic language construct that centers on
use of a standardized notation. The existence of a single common
notation makes AADL relatively easy to automate since it under-
writes a single standard view of all aspects of the system [14].
The notation language allows the engineer to specify system-
specific characteristics by describing the unique set of user
properties as well as any behavior involving state machines. It also
allows the engineer to specify all of the associated error and dis-
semination concerns along with the specific data constraints [15].

The value of the AADL modeling scheme lies in the ability
to isolate the basic components of a system to the right level

http://www.dhs.gov/cybercareers
http://www.usajobs.gov

SUPPLY CHAIN ASSURANCE

of abstraction. This is called kernelling [4]. Kernelling allows
for specific understanding and verification of the correctness
of all components at a specified level of the design. The ability
to describe discrete units within security levels in the architec-
ture enables the practical work of validation and other forms of
black-box testing. It is possible to consider each unit as an indi-
vidual component of the proper functional level. Interactions of
components both within that level and with objects at a higher
level can be understood for the purposes of targeted testing of
each individual component, or the testing of an integrated set of
functions at whatever level designated.

AADL provides tools that capture the assurance case so
that it can be verified against the formal design to identify
inconsistencies. By keeping both the model and the assurance
case current throughout the development life cycle and across
the supply chain, this consistency checking can be used when
COTS components are replaced with updated versions or other
components, when new components are added that change
the overall composition, and when segments of a system are
modernized to meet changing business needs.

AADL is not a simplistic solution to supply chain risk manage-
ment. To take advantage of this modeling capability, the system
and its expected properties must be clearly established within
the model prior to outsourcing. The assurance case must be
assembled and verified against the system model to ensure the
desired properties are consistently applied to the components.
Security concerns expressed in a threat model must be analyzed
and design mitigations characterized as expected properties
within the model. Trust boundaries between components must
be clearly described with properties that formalize allowed be-
haviors. Current SEI research is exploring the range of security
behaviors that can be modeled to establish a level of effective-
ness and the potential for code generation capabilities to carry
formally defined behaviors directly into the resulting product.

Conclusion: Application of AADL to Assurance in
the Supply Chain

The use of AADL to provide a model-based engineering ap-
proach (MBE) offers a better way to design, develop, analyze,
and maintain a system architecture that is supported by a
supply chain. AADL, provides an effective capability to model
and describe all component units in a sourced product and
implement practical measures for their management and assur-
ance throughout the acquisition life cycle [14, 15]. Modeling
enhances the engineer’s ability to identify and address potential
design weaknesses, an important category of security problems
as noted in the common weakness enumerations [23].

Through the application of MBE system engineers, architects
and product developers can reduce risk by performing early and
repeated analysis of the system architecture [14] as outsourced
components are delivered. This level of control and assurance
can reduce cost by ensuring fewer system integration problems
as the product moves up the supply chain.

A formal model can also simplify and ensure more effective eval-
uations of the organization-wide impacts of architectural choices
and, by increasing understanding, make for simpler life-cycle sup-

port [14]. MBE can also increase confidence in the security of the
implemented product because the assumptions that are captured
in the modeling can be shown to have been validated as the prod-
uct moves up to implementation in the operational system [14].

Formal modeling of all system components at all levels of
decomposition gives the engineer the opportunity to define the
detailed security characteristics of a delivered sourced product.
Thus the MBE approach based on AADL design descriptions
should provide the potential for use in the overall verification
and validation work through confirmation of an assurance case
to confirm the correctness of all components in a product [14,
15]. AADL modeling can be used to evaluate the correctness of
components as well as the integration of components provided
through the supply chain from multiple suppliers [13].

AADL has been successfully utilized to model both software
and hardware applications in industries where the need for safe-
ty and reliability is paramount [14, 15]. SEI research is working
to expand the security analysis capabilities of AADL [14, 15] to
incorporate the design characteristics and constraints needed
in formal modeling to anticipate and avoid two critical security
design challenges: acceptance of tainted input and allowing
inappropriate elevation of privileges. AADL offers opportunities
for improvement in supply chain risk management.

Acknowledgment
Copyright 2015 Carnegie Mellon University.
This material is based upon work funded and supported

by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of
Defense.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY
AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARN-
EGIE MELLON UNIVERSITY DOES NOT MAKE ANY WAR-
RANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
This material has been approved for public release and unlimited
distribution.
Carnegie Mellon® and CERT® are registered marks of Carn-
egie Mellon University.
DM-0002424

1. Many of the same challenges apply to open source

NOTE

CrossTalk—September/October 2015 29

30 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Dr. Carol Woody has been a senior mem-
ber of the technical staff at the Software
Engineering Institute, Carnegie Mellon
University since 2001. Currently she is the
technical lead of the cyber security engi-
neering team whose research focuses on
building capabilities in defining, acquiring,
developing, measuring, managing, and sus-
taining secure software for highly complex
networked systems as well as systems of
systems.

Daniel P Shoemaker, PhD, Principal
Investigator and Senior Research Scientist
at UDM’s Center for Cyber Security and
Intelligence Studies. This Center includes
the Computer Information Systems-
Information Assurance Department, as well
as the Center of Academic Excellence for
National Security Agency. The Center has
just completed a two-year Department of
Defense Contract to develop Software
Assurance Curriculum and Courseware.
Dan is a full time Professor at University
of Detroit Mercy with 25 of those years as
Department Chair. As the Co-Chair for the,
National Workforce Training and Educa-
tion Initiative he is one of the Authors of
the National Software Assurance Com-
mon Body of Knowledge (CBK) for the
Department of Homeland Security. But
while Dan spends a lot of time in DC, he
is a Michigan man at heart, beginning with
his education at the University of Michi-
gan and the outreach opportunities he
shepherds within the State of Michigan
through his leadership of the International
Cyber-Security Education Coalition. This
Coalition covers a five state region with
research partners as far away as the
United Kingdom. Dan also spends his free
time authoring some of the leading book in
Cyber Security. Look for his newest edition
to hit the press, this spring Cyber Security:
The Essential Body of Knowledge, based
on the DHS National Cyber Security Divi-
sion’s EBOK. His last book, Information
Assurance for the Enterprise, is McGraw-
Hill’s primary textbook in that field and
was number one on Amazon’s list for three
consecutive years. His next book Engineer-
ing a More Secure Software Organization,
which is also published by Cengage, will be
out next spring.

ABOUT THE AUTHORS
1. MacDonald, Neil; Valdes, Ray Gartner Says IT Supply Chain Integrity Will Be Identified as a

Top Three Security-Related Concern by Global 2000 IT Leaders by 2017. Gartner 2012
2. Mitre Corporation. 2012. Common Weakness Enumeration: A Community-Developed

Dictionary of Software Weakness Types. <http://cwe.mitre.org>
3. Pettey, Christy, “Gartner Says Worldwide Software Market Grew 4.8 Percent in

2013” Gartner, Stamford, Connecticut, March 31, 2014
4. Reifer, Donald J. “Malicious Code in COTS: A Quantitative Study”, Reifer

Consultants, Inc. June 2007
5. Baldwin, K., J. F. Miller, P. R. Popick, and J. Goodnight. “The United States Department

of Defense Revitalization of System Security Engineering through Program Protection.”
Proceedings IEEE Systems Conference (SysCon), Vancouver, CA-BC, March 2012

6. Wilshusen, Gregory C., “IT SUPPLY CHAIN: Additional Efforts Needed by National
Security-Related Agencies to Address Risks.” United States Government Account-
ability Office, Testimony before the Subcommittee on Oversight and Investigations,
Committee on Energy and Commerce, House of Representatives, March 27, 2012

7. Evans, G., “Flying fraudulently – How a Weak Supply Chain Became the USAF’s
worst Enemy,” 2012, URL: <http://www.airforce-technology.com/features/feature-
supply-chain-us-air-force-fraudulent-parts> [Accessed April, 2015].

8. Clark, R.A. and Schmidt, H.A., “National Strategy to Secure Cyberspace, Washington,
D.C.”, The President’s Critical Infrastructure Protection Board, 2003

9. United States Government Accountability Office, “HIGH-RISK SERIES An Update”,
Report to Congressional Committees, February 2015

10. John Steven, “Adopting an Enterprise Software Security Framework”, IEEE Security
& Privacy, vol.4, no. 2, pp. 84-87, March/April 2006

11. SEI (Software Engineering Institute). 2009. CMU/SEI-2009-TR-010. SEI Secure Design
Patterns. Pittsburg, US-PA: Carnegie-Mellon University, Software Engineering Institute.

12. United States Department of Defense, Defense Acquisition Guidebook, Chapter 4 –
Systems Engineering, Production Date: 15 MAY 2013

13. Woody, Carol, Robert Ellison and William Nichols, “Predicting Software Assurance
Using Quality and Reliability Measures” Technical Note, CMU/SEI-2014-TN-026
CERT Division/SSD, December 2014

14. Software Engineering Institute, Architecture Analysis and Design Language,
<http://www.sei.cmu.edu/architecture/research/model-based-engineering/
aadl.cfm>, accessed April 2015

15. Gacek, Andrew, John Backes, Darren Cofer, Konrad Slind and Mike Whalen,
“Resolute: An Assurance Case Language for Architecture Models,” Cornell University,
arXiv: 1409.4629v1 [cs.SE] 16, Sep 2014

16. Cervin, A. & Lund U., Impact of Scheduler Choice on Controller Stability, CCACSD 2006
17. Firesmith, D., Common Concepts Underlying Safety, Security, and Survivability

Engineering, CMU/SEI-2003-TN-033, <http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=6553>

18. Bruce Lewis, Jérôme Hugues, Lutz Wrage, Peter Feiler, John Morley, “Model-Based Verifica-
tion of Security and Non-Functional Behavior using AADL”, IEEE Security & Privacy, 2009

19. Julien Delange Wheel Brake System Example using AADL; Feiler, Peter; Hansson, Jörgen;
de Niz, Dionisio; & Wrage, Lutz. System Architecture Virtual Integration: An Industrial
Case Study (CMU/SEI-2009-TR-017). Software Engineering Institute, Carnegie Mellon
University, 2009 <http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9145>

20. Almorsy, M.; Grundy, J.; Ibrahim, AS., Automated software architecture security
risk analysis using formalized signatures, Software Engineering (ICSE), 2013,
pp.662,671, 18-26 May 2013

21. Asnar, Y., Paja, E., Mylopoulos, J., Modeling design patterns with description logics:
A case study (2011) Lecture Notes in Computer Science, 6741 LNCS, pp. 169-183.

22. Ouchani, S., Jarraya, Y., Ait Mohamed, O., Model-based systems security quantifica-
tion (2011) 2011 9th Annual International Conference on Privacy, Security and Trust,
PST 2011, art. No. 5971976, pp. 142-149.

23. Mitre, Common Weakness Enumerations, <http://cwe.mitre.org/>

REFERENCES

https://wiki.sei.cmu.edu/aadl/index.php/Simple_version_of_the_ARP4761/AIR6110_example
http://cwe.mitre.org
http://www.airforce-technology.com/features/feature-supply-chain-us-air-force-fraudulent-parts
http://www.airforce-technology.com/features/feature-supply-chain-us-air-force-fraudulent-parts
http://www.airforce-technology.com/features/feature-supply-chain-us-air-force-fraudulent-parts
http://www.sei.cmu.edu/architecture/research/model-based-engineering/aadl.cfm
http://www.sei.cmu.edu/architecture/research/model-based-engineering/aadl.cfm
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6553
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6553
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6553
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9145
http://cwe.mitre.org/

SUPPLY CHAIN ASSURANCE

Background
NASA’s system safety and system reliability, has tradition-

ally looked at the software of the system as either “it works”
or “it does not work.” Not that NASA did not do good software
development and develop extensive software fault tolerance
approaches, but NASA relied on the hardware for the safety
aspects even as software took on more complex and critical
functions and most of the roles for fault detection, isolation and
recovery. The amount of software in our earliest missions was
relatively small and straight forward compared to the missions
of today. Originally, Space shuttle and then the International
Space Station worked with balancing hardware’s safety role with
strict development and design criteria for any software that was
considered “safety critical.” The software safety criteria com-
ing from early NASA projects was so strict, that many projects
tried to avoid having their software labeled as safety critical. The
system safety teams on many projects often did not have per-
sonnel with the software expertise for examining software at the
appropriate level. At that time, those system safety teams with
limited software resources and not directly part of the Shuttle or
ISS, seldom were not able to go much lower than considering
software as a system component that either did or did not work.
These teams with limited expertise were unable to take into ac-
count the many ways software can fail, let alone why and what
the impacts were on the system. NASA, for most of those earlier
projects, relied on the hardware. Shuttle and ISS recognized the
need and created a special computer software safety commit-
tee to review software issues and support the program safety
panel(s) (which review the hazard analyses processes for proj-
ects from start to acceptance) and help projects when software

NASA’s Approach to
Software Assurance
Martha Wetherholt, NASA

Abstract. NASA defines software assurance as: the planned and systematic set
of activities that ensure conformance of software life cycle processes and prod-
ucts to requirements, standards, and procedures via quality, safety, reliability, and
independent verification and validation. NASA’s implementation of this approach
to the quality, safety, reliability, security and verification and validation of software
is brought together in one discipline, software assurance. Organizationally, NASA
has software assurance at each NASA center, a Software Assurance Manager
at NASA Headquarters, a Software Assurance Technical Fellow (currently the
same person as the SA Manager), and an Independent Verification and Validation
Organization with its own facility. An umbrella risk mitigation strategy for safety and
mission success assurance of NASA’s software, software assurance covers a wide
area and is better structured to address the dynamic changes in how software is
developed, used, and managed, as well as it’s increasingly complex functionality.
Being flexible, risk based, and prepared for challenges in software at NASA is es-
sential, especially as much of our software is unique for each mission.

becomes critical. As software evolved, taking on more and more
functionality with growing system complexities, NASA saw the
need for software assurance to grow as well. While many felt
that providing software process checks and software product
evaluations was sufficient, the reliability and safety aspects of
software was, and in some cases still is, undervalued. In the
1990’s, software safety at NASA was further promoted via an
agency standard and guidebook that were produced to lay out
the principles of both analyzing the software for contributions to
system faults and failures as well as assessing the risk soft-
ware takes on in reporting and mitigating hardware and system
hazards. The lessons learned from the Shuttle software safety
processes were incorporated and analyses and evaluation meth-
ods were stressed as well as providing support for tailoring the
safety effort to the project. Software Assurance and its other
sub-disciplines have been growing and evolving as well.

Software Assurance
The software assurance process is the planned and system-

atic set of activities that ensure conformance of software life
cycle processes and products to requirements, standards, and
procedures. Software assurance assures that the software and
its related products meet their specified requirements, conform
to standards and regulations, are consistent, complete, cor-
rect, safe, secure and as reliable as warranted for the system
and operating environment, and satisfying customer needs.
Note, scientific principle investigators, many of our custom-
ers, sometimes need a continuing discussion to discover what
is needed verses what is “wanted” and what is possible as we
push forward the principles of science and physics. Thus, some
requirements are actually “desirements” where something less is
actually sufficient; and sometimes NASA can provide them with
more than they knew was possible or alternative solutions.

Software assurance reviews and analyzes all processes used
to acquire, develop, assure, operate and maintain the software
independently; evaluating if those processes are appropriate,
sufficient, planned, reviewed, and implemented according to
an adequate plan, meeting any required standards, regulations,
and quality requirements. Software assurance utilizes relevant
project-based measurement data to monitor each product and
process for possible improvements. NASA software assurance
has begun to work with the NASA Chief Information Office and
Protective Services Office to assess the role of software assur-
ance for mission software security. It is a joint effort between
Software Assurance, the Chief Engineers Office, Project and
program management as well as the CIO and Protective ser-
vices to address the many facets of mission development and
operational environment security.

 At NASA, Software Assurance has evolved in to an
umbrella risk identification and mitigation strategy for safety and
mission assurance of all NASA’s software [Figure 1]. It provides
a consistent, uniform basis for defining the requirements for
software assurance programs to be applied and maintained
throughout the life of that software, that is, from project concep-
tion, through acquisition, development, operations and mainte-
nance, and then evaluates if the software is properly retired.

CrossTalk—September/October 2015 31

32 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

The purpose of software assurance is to assure that software
products are of sufficiently high quality and operate safely, se-
curely and reliably. This includes products delivered to and used
within NASA, and products developed and acquired by NASA.
Software assurance assists in risk mitigation by helping expose
potential defects in products and processes, thus preventing
problems from evolving. However, it also, through its metrics,
tracking and analyses activities, enables improvement of future
products and services. Software assurance often serves as the
corporate memory from project to project, sharing potential
problem areas and lessons learned.

Software engineering and the software assurance disciplines
are integrally related and yet each has its own responsibilities.
Jointly they are responsible for providing project management
with the optimal solution for software to meet the engineering,
safety, quality, and reliability needs of the project. This neces-
sitates a close working relationship to establish the appropriate
levels of effort for both. The NASA Procedural Requirements,
NPR 7150.2, NASA Software Requirements invokes the NASA
Software Assurance Standard (NASA-STD-8739.8) and the
NASA Software Safety Standard (NASA-STD-8719.13), requir-
ing a close working relationship, understanding of roles and
responsibilities, and establishing expected communication paths.
NPR 7150.2, besides laying out the NASA minimum require-
ments for software development, provides the NASA software
classification upon which software engineering, software assur-
ance and software safety all base their tailoring. Table 1 shows
the NASA Software Classes and a very brief, summary defini-
tion of them. The Office of the Chief Engineer “owns” Software
Classes A-E as those are used for Mission software and support
while the Chief Information Office “owns” the infrastructure
software like desktop operating systems and applications, web
based applications, etc. which are Software Classes F, G & H.
Software Assurance has focused on the mission software.

The NASA Software Assurance and Safety standards are also
invoked from the Agency System Safety, Reliability and Quality
policies and procedures, thus stating not just the recognition of
software assurance as an explicit special discipline, but also the
expectation of software assurance as part of the joint assurance,
safety and reliability support to NASA’s systems. The struggle is
balancing the need for software to be part of the overall system
assurance, safety and reliability analyses and having the expertise
needed to take those systems analyses down to the proper depth
to see the potential impacts of software errors on that system.

The NASA Software Assurance Standard (NASA-STD-8739.8)
provides a common framework for software assurance definition,
activities, and implementation across NASA and its contractors.
It provides tailoring recommendations in order for software as-
surance planning and execution to meet the needs of different
flight, ground, facility and experimental software projects. The
NASA Software Safety Standard lays out a systematic approach
to software safety as an integral part of the overall systems safety,
establishing the activities, data, and documentation necessary for
the acquisition and development of software in a critical system.
It also defines the levels of criticality for software, starting with
a “litmus test” to determine if the software is safety critical (see

Figure 1. NASA’s Software Assurance Umbrella of Risk Mitigation

Table 1. NASA Software Classifications

!

SW#
Quality V&V Software

Safety
Software
Reliability IV&V

Quality#Engineering
Quality#Control
Quality#Assurance

Process'&
Product

Cyber&Mission&Security&
Assurance&

!

SUPPLY CHAIN ASSURANCE

list below) or not. Then provides additional risk based scoping
based on severity and likelihood of occurrence, level of autonomy,
complexity, and time to criticality. Time to criticality is important
and changes with missions and functions, it is the amount of time
to detect, recognize and react to a fault or potential failure before
it becomes a failure, or if a failure occurs, then the time to put the
system in to safe mode while correcting the problem. This de-
termines the level and extent of autonomy of the fault detection,
isolation and recovery activities. Both standards provide a clear
acquirer –provider perspective as well as tailoring that meets the
level of effort for the software class and criticality.

NASA software is classified as safety critical if it meets at
least one of the following:

a. Causes or contributes to a system hazard/condition/event.
b. Provides control or mitigation for a system hazards/

condition/event
(1) Controls safety critical functions.
(2) Mitigates damage if a hazard/condition/event occurs.
(3) Detects, reports, and/or takes corrective action, if the

system reaches a potentially hazardous state.
c. Processes safety critical commands (including autonomous

commanding)
d. Resides on the same processor as safety critical software and

is not logically separated from the safety critical software.
e. Processes data or analyzes trends that lead directly to

safety decisions (e.g., determining when to turn power off
to a wind tunnel to prevent system destruction).

f. Provides full or partial verification or validation of safety
critical systems, including hardware or software subsys-
tems. (e.g., this can include models and simulations)

With the basic software engineering and assurance require-
ments firmly established across NASA, it becomes a matter of
training, implementation and improvement. NASA has a robust
training program for software assurance. The NASA Safety Cen-
ter maintains not only NASA created instructor and web-based
training on all the sub-disciplines of software assurance, it also
contracts with outside experts to bring in specialized training
where needed. NASA’s Software Engineering also has agency
wide training that software assurance participates in as well as
project level training for project specifics.

Organizationally, within NASA, the number of actual practitioners
of software assurance assigned to the independent offices of
Safety and Mission Assurance across the Agency may be relatively
small. Thus, the requirements are intentionally written so that many
different groups may perform different aspects of software assur-
ance (e.g., systems engineering might perform the software safety
analyses, software engineering might collect and trend defects).
An entity/organization independent from the organization creating
the software still is required to either perform or guarantee that
software assurance activities are performed correctly and to the
necessary level, and that records of those activities are created,
analyzed, and maintained. Software Assurance metrics are also
important. Software engineering and software assurance organiza-

tions share many software product quality metrics and process
metrics, but NASA also requires software assurance performance
metrics, to track and measure the performance of the software
assurance activities and to improve activities for missions. Many
software assurance activities may be tailored and performed within
the project structure, but a group independent from the project
evaluates those activities and the results. For NASA this is the
Safety and Mission Assurance (SMA) organization; for a contrac-
tor, this should be a managerially separate safety and assurance
organization which should be called out in the contract. Often, one
or more software assurance engineers from an SMA organization
may be assigned to work with a project throughout its life cycle.
While these software assurance engineers are a part of the project
and participate in day-to-day activities, perform most or all of the
assurance functions, and attend project meetings and reviews, they
maintain a separate reporting chain through their SMA organiza-
tion. This activity is much like an oversight role, that is, the software
assurance engineers are closely tied in with the project and provide
input on a daily basis. At other times, the independent organiza-
tion, SMA, may provide only insight for the project, evaluating if the
software assurance activities are performed and performed suf-
ficiently by the project personnel and participating more by audits
and at formal review intervals. In either case, there must be a close
working association and joint reporting to both the project and the
SMA organization.

NASA’s Independent Verification and Validation (IV&V) is the
third look at our most critical software. Engineering is responsi-
ble to build the software correctly and according to known good
principles and thus is the first look. Software assurance works
with the projects on a day to day bases, assessing the quality,
safety, security and reliability of the processes and products and
is the second look, with independent reporting chain up through
the Center Safety and Mission Assurance Office and more
closely associated with the total software processes and prod-
ucts. For NASA’s most critical software, NASA’s IV&V provides
the third look, an objective examination of safety and mission
critical software processes and products, delving into the analy-
ses of the most critical aspects of the software on a project
looking at safety, security and reliability. IV&V is considered to
be technically, managerially and financially independent from the
projects it works on. IV&V focuses on three perspectives:

• Will the system’s software do what it is supposed to do?
• Will the system’s software not do what it is not supposed to do?
• Will the system’s software respond as expected under

adverse conditions?
As a part of Software Assurance, IV&V plays a role in the over-

all NASA software risk mitigation strategy applied throughout the
lifecycle, to improve the safety and quality of software systems.

Improvement of the software assurance program is achieved
via four main paths and sundry smaller ways. First, there is a
robust audit program that checks not only that the requirements
are being followed in the field, but also brings the NASA Software
Assurance Manager data to consider for systemic problems with
the requirements implementation, training, and with the require-
ments themselves. Each of NASA’s Centers and facilities, as well

CrossTalk—September/October 2015 33

34 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

as some of the major programs are audited at least every 2-3
years from the Headquarters level. After each audit, the findings
are discussed and compared to previous audits and center/facility
results. Any repeat or evolving problem areas are then discussed
with the Center/facility personnel for resolution and the data is
used to see what additional training, guidance or even changes
are needed in the requirements. At the Center or facility level,
internal audits for each project are run more frequently according
to the schedule and criticality of project development. In addition,
Center Safety and Mission Assurance level technical authorities
monitor all safety, reliability, quality, and software assurance on
projects. Projects work with SMA to conduct internal audits and
CMMI® Level 3 assessments (or equivalent) are required for all
NASA’s Class A, and most of Class B, Software projects.

The second improvement path is the NASA Software Assur-
ance Research Program (SARP). Software engineering develop-
ment and analyses continues to evolve, in order to stay current
with software changes and the environment in which software
is developed and operated, NASA has a long standing research
program, SARP, which yearly polls the software assurance and
software engineering communities for areas of need in soft-
ware assurance. Then a research call is sent out, mainly within
NASA, to solicit proposals to address these issues. SARP seeks
practical solutions, tools, guidance, and processes of value to
the greater software assurance community. The projects can be
from 1 to 3 years in length with a transition to practice as part
of the work. The proposals are peer reviewed by the community
and selected according to need and meeting the SARP criteria

for a good project. Some examples of SARP’s output include
a software (and system) hazard tracking system; guidance on
better ways to collect, visualize, and present software assur-
ance data; processes for performing Model Based testing of
large systems; cost estimation methods for software assurance
activities, and command reliability, to name a few. SARP usually
has one or two projects that look to future software assurance
needs, researching and posing potential solutions, and ques-
tions, to the ever evolving software development and operational
landscape. Not every year are there sufficient funds to cast the
research requests out to all industry and academia, but it is not
insular, either. While limited, NASA’s SARP program does seek
out input from academia and beyond to keep current with new
trends in software and computing systems.

Third, and most importantly, the NASA Software Assurance
community is a close knit group that shares successes and failures,
supporting one another and working together to create the assur-
ance and safety standards, guides, and select needed training and
research. Meeting, on average, twice a month via telecon and once
a year in person, the NASA Software Assurance Manager, NASA
Safety Center Software Assurance Lead and all the Center/facility
software assurance leads and personnel stay current with Agency
trends and needs. They review SARP work, present on their
Center/Facility work, needs, and issues. Then they jointly formulate
the NASA Software Assurance Objectives, Goals, Strategies and
Metrics to create a road map to improve software assurance, laying
out 1 to 5 year goals and strategies. This strong community is the
heart of NASA software assurance.

!Figure 2: Activities Performed by Software Assurance Organizations Benchmarked Outside of NASA

SUPPLY CHAIN ASSURANCE

The current NASA Software Assurance Objective: Demon-
strate Software Assurance’s contribution to assuring safety
and mission success across all of NASA programs/projects/
facilities with software.

Goal 1: Strengthen and maintain software assurance core
competencies at all NASA centers [Make sure we have the right
skills to do the job]

Goal 2: Establish a core set of SA performance measures for
all Centers across the Agency [Measure if we are effective and
if not, know where to fix it]

Goal 3: Increase value and establish SA as a core Engineer-
ing discipline [Provide clear relationship between what SA does
and the risks it mitigates. Focus on risks the project and stake-
holders need most to resolve.]

Goal 4: For all NASA Projects, obtain the appropriate level of
SA funding necessary to meet the projects’ software assurance
requirements tailored to the Program/Project’s risk posture [As-
sure sufficient software assurance on a project for the scope,
criticality and classification of the software, which means know-
ing what it costs to perform SA.]

The NASA Software Assurance community, while close knit
and supportive does look beyond the NASA problem field.
Benchmarking of academia, industry and portions of DOD allows
NASA to not only compare where we are with others, but infuse
new ideas. SMA has benchmarked with the Navy in the past
and learned and shared both problems and approaches to suc-
cess. NASA software engineering and assurance have recently
benchmarked with 18 organizations, five of them from indus-
try. The main assurance activities reportedly performed by the
benchmarked organizations can be seen in Figure 2, above. The
numbers show how many of the 18 benchmarked organizations
reported having software assurance involved with each activity
listed. Note that two universities had no formal assurance role at
all. Also note that the activities are not counted if performed by
other roles. For example, engineers rather than assurance person-
nel are often assigned to software safety and reliability.

Although some activities may not be reflected in the num-
bers (topics missed in the discussion), they provide a starting
point for examining software assurance as documented versus
the actual practice of it. While NASA has much more focus on
software safety and reliability within the assurance organization,
as well as contributing to the acquisition process and verification
and validation processes, those benchmarked against NASA
usually saw those activities as falling within another group.

The five Aerospace Industry organizations interviews can be
summarized as follows:

• All industry organizations reviewed saw the main func-
tion of software assurance as performing process and product
quality assurance (PPQA) and maintaining software compliance
with institutional standards. Safety and reliability were seen as
engineering roles.

• These organizations also tended to have a low ratio of
software assurance engineers to the number of developers. For

example, one organization had five to six software assurance
engineers for about 200 developers. At the far end, an organi-
zation had only one “SQA person” for a 100-person software
engineering project

• The high CMMI process maturity of most of these organiza-
tions might be a factor in their perceived need for assurance.
All but one had been appraised at CMMI Maturity Level 3 or
higher and, as one noted, greater process maturity means more
repeatable, institutionalized processes and fewer audit findings.
The one organization that hadn’t used the CMMI also used one
assurance person for a team of 15 developers and 4 testers –
the highest ratio in the group.

• The industry organizations tended to use tools and metrics
on the engineering side. Two of the organizations mentioned
wide use of Six-Sigma, which also correlates with high CMMI
maturity.

Defense services organizations were interviewed, and their
inputs on this topic can be summarized as follows:

• All the defense organizations had been appraised to some
CMMI level; two had achieved CMMI ML 5 at some point, with
one maintaining certification.

• Following a similar pattern to the industry organizations, all
four organizations used software assurance primarily in a PPQA
role and did not discuss their role in reliability or safety.

• Three out of the four organizations also used software as-
surance to witness or otherwise assure software testing.

• The one CMMI ML5 organization maintained a process
assurance group, dedicated to process compliance, and QA and
IV&V groups for checking products.

• Of the three organizations that discussed Field Programma-
ble Gate Arrays (FPGAs) or other Programmable Logic Devices
(PLDs), none mentioned software assurance.

The following trends were identified, based on these inter-
views and compared to 5 of the 10 NASA centers:

• NASA Centers tended to involve software assurance in
a greater range of development activities. Four of the five as-
surance organizations were involved with process tailoring, in
addition to the PPQA audits.

• Four out of the five (not the same four) were witnessing or
otherwise assuring that tests were performed properly.

• Four out of five NASA Centers also performed some assur-
ance activity related to software safety.

• Three out of five of the NASA Centers used assurance per-
sonnel to monitor suppliers or software contracts in some way.

From this particular benchmarking, NASA software assurance
has a broader scope, even if some of the Centers are not as
involved as others in all the software activities that NASA de-
scribes as software assurance. This can be explained in part by
the allowance of software safety and reliability to be performed
by other organizations but also, not all NASA Centers work on
Software Class A or B software. Many software projects at the
NASA research Centers are assuring research and technology
development projects.

Figure 2: Activities Performed by Software Assurance Organizations Benchmarked Outside of NASA

CrossTalk—September/October 2015 35

SUPPLY CHAIN ASSURANCE

In today’s environment of cyber attacks, NASA has, in the past,
considered this to be the realm of the Chief Information Office
and the Protective Services Office. This may have worked for
us in the past, but in today’s world, NASA’s Software Assurance
has a role to play as well. In the DoD world, the term “software
assurance” has almost become synonymous with cyber security
and their increased focus in this area is understandable as the
effort is large and only getting bigger. We are all vulnerable, and
for NASA, our software resources, especially software assurance,
are limited. The NASA software community (engineering, assur-
ance, project management) is now joining our CIO colleagues in
reaching out to the forums, training and working groups of DHS,
DoD, NIST, and others to accelerate our efforts and share what
we have learned with those who are also in this struggle. Still,
NASA, like our colleagues, must continue to provide the quality,
reliability and safety aspects of software that has kept NASA
flying for many years and which supports elimination of vulner-
abilities. While NASA SA is working more closely with the CIO of-
fice to better cover security oversight of Mission Software, it has
not given up its strong dedication to safety, reliability, quality and
Independent Verification and Validation, rather it has incorporated
mission software security assurance into its repertoire.

Disclaimer:
CMMI® is registered in the U.S. Patent and Trademark Office

by Carnegie Mellon University.

Martha Wetherholt is the NASA Software
Assurance Manager and Technical Fellow.
She has worked at NASA since 1989 fo-
cusing her efforts in the areas of Software
Safety, Reliability, Risk Management, and
Quality. Prior to working at NASA, Martha
worked predominately in the factory
automation industry, working as a software
engineer, systems engineer and supervi-
sor, managing several software intense
projects, balancing the need for delivering
quality working products within sched-
ule and resources. After many years in
industry, Martha accepted the role of Lead
in Software Product Assurance at NASA’s
Glenn Research Center. In 2001, she
became the NASA Agency Software As-
surance Manager at NASA Headquarters
in Washington, DC. Her current roles and
responsibilities include establishing the
tasks, procedures, policies, training, and
requirements for software assurance and
safety across the Agency. She has led the
effort to create and maintain the NASA
SW Assurance and SW Safety Standards
and Guidelines as well as establish a set
of SW Assurance core competencies. Mar-
tha continues to work with NASA Center
software assurance and safety personnel
to strengthen the role of software assur-
ance and software safety, assuring that the
training, expectations, policies, guidelines
and support is there to achieve this work.
Martha has worked to bring software to
its proper place in systems and facility
safety. She established and maintains a
core, Agency-wide SA team with whom
she works to strengthen the role of SA,
assuring that the support is there to meet
NASA’s software challenges. Martha has
received many NASA awards including the
prestigious NASA Medal for Exceptional
Achievement for her work in software
safety. She is a member of IEEE and
AIAA. Martha received her BS degree in
Biomedical Engineering from Case West-
ern Reserve and a MS from Cleveland
State in Industrial Engineering.

ABOUT THE AUTHOR

36 CrossTalk—September/October 2015

http://www.navair.navy.mil

SUPPLY CHAIN ASSURANCE

CrossTalk—September/October 2015 37

Software Security Assurance

SOUP to NUTS
Dr. C. Warren Axelrod, Delta Risk LLC

Abstract. The ability to assess risks of and from specific software supply chains
depends in large part on the amount, accuracy and availability of essential informa-
tion. Only when such information is at hand can we hope to assure ourselves of the
quality and security of installed software. In this paper we use an expanded version
of the Cynefin Framework to come up with preferred approaches to categorizing
software supply chains not only based on the potential knowledge levels of those
responsible for evaluating, approving and operating systems, but also according to
what can be known about particular supply chains. We suggest how each category
of supply chain might be evaluated and fixed in the face of adverse incidents.

on investment in an ever more complex environment.
In addition, a worldwide data-sharing infrastructure is needed

in order to allow entities comprising global supply chains to
inform one another of events that will likely have a significant
impact on the quality and availability of supplied software and
equipment components. In order to understand what data need
to be collected and how they should be used by decision-
makers to manage the vagaries of software supply, we take the
Cynefin Framework and extend it to cover additional software
supply-chain characteristics. Based on this approach, we are
able to suggest appropriate data-gathering and decision-making
methods that meet each of a large variety of situations.

DoD and National Security Context
In a 2012 report on “IT Supply Chains,” [3] the GAO affirmed

that, among the four U.S. national security-related depart-
ments, the DoD had made greater progress by defining supply
chain protection measures and implementing procedures for IT
supply-chain assurance than had the departments of Energy,
Homeland Security and Justice. Nevertheless there is still much
work to be done by the latter three agencies with national-secu-
rity responsibilities, as recommended by the GAO report.

This does not mean, however, that the DoD is free and clear
when ii comes to IT supply-chain risk management. Despite all the
progress in methods, procedures and tools that has been made
over the last decade, there are still many areas that remain un-
known, and may not even be knowable, to DoD program managers,
particularly since extensive code reviews and software assurance
testing have not been required. This implies that full assurance of
IT supply chains remains a goal rather than a reality. Little has ap-
peared in the literature on the ability of analysts to know each and
every component of IT supply chains so that many of the structures
of, and participants in, supply chains remain obscure or unknown,
particularly with respect to commonalities [4]. Consequently, many
vulnerabilities are not known either. As stated in [5]:

“[The DoD needs] to better “see” into some legs of the supply
chain, especially where critical components are involved.”

While a report by Adams [6] is oriented towards the manufacture
of physical products rather than software in regard to supply chains
of the U.S. defense industry, its conclusions also apply to IT prod-
ucts, software, and services. The report recommends the following:
1. Increase long-term federal investment in high-technology

Industries
2. Apply and enforce existing laws and regulations
3. Develop domestic sources for key ... resources
4. Develop plans to strengthen the defense industrial base
5. Build consensus ... on the best ways to strengthen the

defense industrial base
6. Increase cooperation among federal agencies and between

government and industry
7. Strengthen collaboration among government, industry and

academic research institutions
8. Ensure collaboration on economic and fiscal policies for

long-term budgeting
9. Modernize and secure defense supply chains [emphasis added]
10. Identify potential defense supply-chain chokepoints and

plan to prevent disruptions

Introduction
For this context the most appropriate definition of “supply

chain risk” is:
 “... the risk that an adversary may sabotage, maliciously intro-

duce unwanted function, or otherwise subvert the design, integrity,
manufacturing, production, distribution, installation, operation, or
maintenance of a covered system so as to surveil, deny, disrupt, or
otherwise degrade the function, use, or operation of such system.”1

In order to manage software supply-chain risk, accurate
and extensive data must be collected, analyzed and re-
sponded to. All too often, however, crucial data are not readily
at hand or they are difficult and/or expensive to collect, if
indeed they can be gathered at all.

According to a 2004 report on “Defense Acquisitions,”[1] the
GAO found that the U.S. DoD acquisition and software security
policies were inadequate particularly in addressing risks relat-
ing to foreign suppliers developing weapon system software.
Because of increasing difficulty and costs of testing computer
code, the GAO suggested that, rather than testing code, those
responsible for approving systems learn more about who
developed the software and where they were located in order
to arrive at a more informed vendor selection decision, which
could mitigate risks. While such an approach is better than noth-
ing, it does not come close to the level of software assurance
obtained from independent in-depth testing of computer code.
Furthermore, software makers usually incorporate software
components from other sources, including open sources, which
may not be known to vendors, contractors, or their customers.2

In this article, we investigate why so much necessary informa-
tion is not forthcoming and propose approaches for obtaining
elusive and costly software supply-chain data. Such information
can provide analysts with the ability to anticipate, detect and re-
act to adverse issues before, during and after they occur, rather
than well after the fact, which is unfortunately more usually
the case. Investment in the collection and analysis of software
supply-chain metrics offers the potential of significant returns

38 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

It should be noted that the report [6] does not generally focus
on the need to collect the knowledge necessary for making
appropriate supply-chain decisions, although the exhortation to
“identify chokepoints” implies some degree of information gather-
ing. Facilitating the acquisition, analysis and understanding of data
about software supply chains is a dominant objective of this article.
That is to say, we want to bring to light how decision-makers should
go about determining what is known, what is not known, what it will
take to acquire the necessary knowledge, what is unknowable, and
what they need to do under various circumstances.

Similarly, neither the recently published NIST Special Publica-
tion [7], which applies across all Federal information systems
and organizations, nor the CNSS report [8], which addresses na-
tional security systems, specifically examine the “ability to know”
supply-chain information. They proceed with the understanding
that required information is readily available, which is far from
the case in many circumstances. Nevertheless, both of these
publications set forth invaluable guidance and the CNSS report
[8] provides a very useful list of references with which DoD
managers responsible for supply chains should become familiar.

The Provenance of Software
If you don’t know where critical software comes from, then you

may well be in the SOUP, literally, where SOUP means “Software
of Unknown Provenance (or Pedigree)” Such software products
may not be trustworthy because their origins are questionable or
unknown. At the other extreme, if you think that you know every-
thing about a particular piece of software, e.g., who designed it,
who wrote it, and who tested it, the results of the tests, and so on,
then you might be willing to rely on NUTS3 or “Not Unreasonable
Tracking Systems,” in order to verify that the software develop-
ment lifecycles (SDLCs) involved follow predetermined routes and
are subject to appropriate levels of oversight.

Of course, there are many other situations between no knowl-
edge and complete knowledge, such as knowing something about
the backgrounds of some of the developers and their works, but
not enough to give one much confidence that there aren’t any little
malware devils that might be lurking within the overall system, often
for years, until they are revealed through some incident or other.
Even when software is “open source,” meaning that its source code
is available to anyone wishing to look through the programs and
modify them (under certain predetermined conditions), there are no
guarantees that errors or deficiencies have not been introduced or
that there is sufficient funding to provide suitable levels of techni-
cal and operational support. The exploitation of Heartbleed and
Shellshock malware demonstrated this.4

Furthermore, there are times when everyone else appears to
have known about some threat or vulnerability, but you just didn’t
happen to have been aware of them (oblivious), in which case
there will some answering to do in order to satisfy management
... or not, as the case may be.

Goals of Decision Makers
In order to establish the best possible situation, given the pro-

liferation of buggy software and the ability of evildoers to take
advantage of these deficiencies, one’s goals should be to:

• determine what is known about a piece of software’s
provenance and what is not

• understand which risks are known to the community and
which are not

• find out more about unfamiliar risks so that they might be
mitigated

• take steps to mitigate known risks or have good reasons for
not having done so

• come up with approaches for dealing with unknown or
unexpected risks

• establish a professional and industry/sector network to stay
informed about risks relating to supply chains of software
that you plan to acquire and install

• maintain current knowledge about software supply-chain
research, industry/sector and professional publications,
conferences, podcasts, webinars, etc.

• understand that there are certain software products that
operate covert systems about which you may never know
but which can affect you in some way or another, purposely
or inadvertently

We will gain a better understanding of how to achieve these
goals by expanding an established decision framework to incor-
porate additional contexts found in software supply chains.

The Known/Unknown (K/U) Model
Since lack of knowledge is a major contributor to inadequate

and inappropriate responses to supply-chain malfunctions and
failures and the ability to recover quickly, it is important to fill in
where there are clearly deficiencies. The first step is to un-
derstand what makes up the universe of knowledge and then
determine which areas need to be augmented with a higher level
of understanding. In Table 1, we show how knowledge about soft-
ware supply chains might be categorized depending upon how
knowledgeable cybersecurity professionals might be concerning
particular software supply-chain deficiencies or weaknesses.

The underlying concept here is that either you know or don’t
know in advance about specific threats or vulnerabilities with
respect to particular software products’ supply chains. If you did
know, the question then arises as to whether you responded
appropriately. If you didn’t know, then how are you going to en-
sure that you will get advance notification if and when a similar
situation is occurs in the future? If you didn’t know but should
have known, then your suitability to the task is in question. If you
could not have known, you need to examine whether you have
appropriate monitoring and incident-response mechanisms in
place to react correctly.

These concepts of whether one is aware or unaware of various
situations have been incorporated into a framework, called the
Cynefin Knowledge Framework (“Cynefin”), which is designed to
assist leaders in their decision making. The model is described in
[9]. As mentioned above, we will expand this framework to facili-
tate decision-making with respect to software supply chains.

The Cynefin Knowledge Framework
Cynefin (translated from the Welsh as “habitat” or “place”) is

roughly analogous to the above K/U model. Cynefin suggests
how decision-makers should respond to events that fall within

CrossTalk—September/October 2015 39

SUPPLY CHAIN ASSURANCE

Table 1. K/U model categories of knowledge by information available

Analysts’

Knowledge

Information Available

Knowns Unknowns

Known Obvious – I knew all about this in advance
but didn’t act on it quickly enough

Obscure – I knew that I didn’t know anything
about this, but couldn’t get the data for
economic or other reasons

Unknown Oblivious – I was not aware of this even
though my peers were

Unfathomable – I didn’t have a clue that this
existed, nor did my peers

various contexts. In this article, we extend the framework to
cover situations not specifically addressed in Cynefin.

In a video,5 Snowden differentiates between categoriza-
tion models (such as the 2 x 2 matrix K/U model above) and
“sense-making” frameworks, such as Cynefin. With categorization
models, the framework precedes the data; but for sense-making
frameworks, “the framework itself emerges from the data ...”
Figure 1 illustrates Cynefin, which has evolved over time.6 For
example, “simple” contexts in have been replaced with “obvious”
contexts, and the fifth category “disorder” seems to have been
dropped. Also, there are subtleties that do not show up in the
diagram, but are described in the video, such as catastrophic
consequences of a transition from “obvious” to “chaotic” contexts.
“Disorder” contexts cover otherwise uncategorized items.

Cynefin divides the contexts between “ordered systems,”
which are highly constrained and predictable, whether obvi-
ous or complicated contexts, and “unordered systems,” which
have fewer constraints and, for chaotic contexts, exhibit
unpredictable random behavior.

Categories within the known/unknown (K/U) model are quite
similar to Cynefin contexts, except for two instances. One instance
is the chaotic system, the context of which is “unknowable,” and
the other instance is K/U Model’s category of “unknown knowns,”
which is not represented explicitly in Cynefin. Table 2 shows simi-
larities and differences between the two models.

In Table 2, we have added three contexts, namely, “oblivious,”
“obscure,” and “stealth,” which are shown in the shaded entries.
“Oblivious” contexts, which are part of the K/U model, are those
where decision-makers are not aware of certain information
generally known to many practitioners. Note that “oblivious” is a
characteristic of decision-makers rather than of systems. “Ob-
scure” contexts, which belong to neither Cynefin nor K/U, are
those where surreptitious methods are needed to find out about
system vulnerabilities.7 “Stealth” contexts are for systems which
are meant to be kept secret.8 The expanded Cynefin framework
is illustrated in Figure 2.

According to the definitions of Cynefin realms, “knowable
“and “known unknowns” realms are equivalent—for “know-
able,” decision-makers are aware that certain items, which are
not known, may become known through analysis. For “known
unknowns,” items are known to some but not to others.

If items are “unknowable,” then nobody knows about them and
you are generally “off the hook” if they occur. However, if you

Figure 2. Suggested Expanded Framework

Figure 1: The Cynefin Knowledge Framework

40 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

don’t know about something that you should (this is not addressed
specifically in Cynefin), then you might be accused of not maintain-
ing currency in the field. This latter situation is most dangerous with
respect to software supply chains, since decision-makers might be
considered ignorant (or worse, negligent) in the event that some-
thing goes wrong.9 This is why information sharing is crucial for
successful management of software supply chains.

We now extend Cynefin to include the K/U model so as to
determine the decisions that need to be made and the amount
of effort to be expended on assessing and mitigating risks. In
Table 3, we show Cynefin (unshaded areas) with extensions
derived from the K/U model (shaded areas).

Realistically, there are those with software supply-chain re-
sponsibilities who are somewhat unaware of what is going on in
the outside world as it pertains to their supply chains. Published
reports about how organizations scramble in response to malware
and hacking incidents and other forms of supply-chain disruption
support the contention of ignorance, even when information about
vulnerabilities and weaknesses are already in the public domain.10

Most academic treatments of this topic do not address deal-
ing with criminal elements to obtain obscure information about
malware and back doors that may have been inserted into soft-
ware products during their supply-chain lifecycles. However, it is
common knowledge that there are large and lucrative markets
for the sale of exploits and vulnerability information.11 Some
might consider such information to be “unknowable,” if they
refuse to deal with dubious, clandestine or criminal elements.
Also, the news about secret software systems is usually mere
happenstance as might occur through some error or by the leak-
age of classified information by insiders.

Software Supply-Chain Risks
It can be difficult to come up with meaningful risk assess-

ments for each of the seven contexts in the extended Cynefin.
In the first place, analysts and/or decision-makers are often
not aware of supply-chain weaknesses. Whether such defects
will have serious personal and organizational consequences
depends largely on efforts made to find out about vulnerabili-
ties preemptively. As mentioned, an important consideration is

Contexts Practices K/U Model Cynefin Realms Differentiating Activities

Obvious Best Known knowns Known knowns Categorize

Complicated Good Known unknowns Knowables – Known unknowns Analyze

Complex Emergent Unknown unknowns Unknown unknowns Probe

Chaotic Novel -- Unknowable unknowns Act

Oblivious Ignorant Unknown knowns -- Investigate

Obscure Clandestine Unknown knowables -- Deal

Stealth Secret Unknowable unknowables -- Respond

!Table 2: Knowledge for system contexts of an extended framework.

whether one’s peer group is already aware of such vulnerabili-
ties. It is much more damaging to one’s career if you are one of
only a very few who lack knowledge than in a situation where
everyone is just as ignorant.

The reverse may not be true, however. If you anticipate an is-
sue that others don’t or won’t recognize as important, whether it
is to your advantage or not when an incident occurs depends on
whether you acted on the knowledge. For example, if you expect
the electrical power grid to be unreliable in a particular country or
region and you installed a generator when others in the area did
not, you become a hero when a power outage occurs. However, if
you just mentioned the power problem but did not install a backup
generator, you might be considerably worse off than if you hadn’t
mentioned the problem in the first place, since you might be ac-
cused of not being aggressive enough in making your case.

Software Supply-Chain Lifecycles
As described in [12], software supply chains differ significant-

ly from those of physical products. Software’s unique character-
istics include the following:

• Software can be copied without affecting the original and
sold on the black market

• Software can be distributed in electronic form without
transporting physical media

• Malware and back doors can be inserted into authentic
software without leaving any trace

Because of these characteristics, the software supply-chain
lifecycle is also somewhat unique. Table 4 lists specific attri-
butes of software supply chains for each phase.

Information and Communications Technology
(ICT) Supply-Chain Risks

A particularly extensive report [13], developed by the DoD,
provides a list of threats that can, and do, impact software and
software supply chains, including: Sabotage, Tampering, Coun-
terfeiting, Piracy, Theft, Destruction, Disruption, Exfiltration—
theft, Exfiltration—disruption, Infiltration, Subversion, Diversion,
Export Control Violations, Corruption, Social Engineering, Insider
Threat, Pseudo-insider Threat, and Foreign Ownership.

CrossTalk—September/October 2015 41

SUPPLY CHAIN ASSURANCE

Ordered/

Unordered

Knowledge Knowns Unknowns

Ordered Known

(Knowable)

•! Contexts: Obvious (Simple)
•! Realm: Known knowns
•! Domain: Best practice
•! Standard process invoked with review

cycle & clear measures

•! Contexts: Complicated
•! Realm: Known unknowns
•! Domain: Good practice
•! Analytical techniques used to

determine facts
Ordered or
Unordered

Unknown •! Contexts: Oblivious
•! Realm: Unknown knowns
•! Domain: Ignorant
•! Investigations of vendors, contractors

and industry and professional groups to
find out what is generally known

•! Contexts: Complex
•! Realm: Unknown unknowns
•! Domain: Emergent
•! Diverse interventions needed to create

options

Ordered or
Unordered

Unknowable •! Contexts: Obscure
•! Realm: Unknowable knowns
•! Domain Clandestine
•! Clandestine dealings to try to get

information

•! Contexts: Chaotic
•! Realm: Unknowable unknowns
•! Domain: Novel
•! Single or multiple actions required to

stabilize situation
Ordered or
Unordered

Unknowable •! Contexts: Stealth
•! Realm: Unknowable unknowables
•! Domain: Secret
•! Able to respond only when secret is

unintentionally disclosed
!Table 3: Extensiaons to the Cynefin framework compared to the K/U model

Table 4: Software characteristics for phases of the supply-chain lifecycle

While many of these threats apply to software products generally,
including those built in-house, they all can occur in both national
and global software supply chains. Table 5 suggests some risk
mitigation approaches for each context of our extended model:

In general, risk mitigation comprises obtaining as much advance
warning as possible from a broad population of sources and re-
sponding in ways that improve, rather than exacerbate the situation.
It is strongly advised to have a complete set of contingency plans in
place so that they can be drawn upon as circumstances require.

Software Assurance Factors
Much of software supply-chain risk management involves

information sharing and decision making based upon con-
texts in order to mitigate the many risks that affect software
supply chains. However, many incidents that occur can be
avoided by proactively making sure that the software goes
through a rigorous software assurance process, which might
include various forms of certification.

Phase Software Supply-Chain Lifecycle Attributes

Requirements Requirements (specifications), design and development can be done virtually anywhere that has
suitably educated staff and reliable, low cost telecommunications

Design

Building

(Development)

Distribution Although some software is still distributed on physical media, it is common to distribute software
electronically and increasingly software is available in the Cloud so no distribution as such is
necessary. Warehousing

Deployment Software is deployed via various wholesale and retail outlets although it is often downloaded
from vendor and or distributor websites, including open-source.

Operation In theory, software can be run indefinitely although there are reasons for it becoming obsolete,
such as cessation of vendor support, replacement of operating systems and platforms, changes
in hardware, etc. Maintenance and

Support

Disposal Software can generally be deleted or replaced without having to destroy media, although having
users properly eliminate all traces of the software, including backup copies, is unreliable.

!

42 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Table 5: Risk mitigation approaches for various contexts

In order to incorporate software assurance standards into
supply chains, it is first necessary to determine what those stan-
dards should be and how they should be used and managed.
As described in [10], this could be accomplished addressing a
number of technical, economic and governance issues including:

• Development of software assurance technical standards
• Management of software-assurance and certification standards
• Evaluation of tools and techniques for assuring software
• Determination of update frequency for tools and techniques
• Focus on the most pressing threats to software and supply chains
• Establishment of models of the economics of software-

assurance solutions, and testing and certifying software

Once such standards have been established, we come to the far
greater task of enforcing them on third parties both domestically
and internationally. As can be imagined, this would require a major
political effort far beyond anything that has been attempted so far
in this arena. Nevertheless, some significant part of this goal needs
to be implemented if trust in software is to be achieved at even a
rudimentary level. The only real possibility to make progress here
is to use economic means of encouragement as can be brought
about with a carrot, by (for example) requiring government agen-
cies only to buy software that meets agreed-upon international
standards, or with a stick by invoking legal measures that places
liability on software manufacturers, as suggested in [10].

Conclusions
Before one can reasonably address the quality of software

emanating from supply chains, it is necessary to understand the
various contexts within which knowledge of software products’
provenance can exist. It is suggested that the known/known
model combined with the Cynefin framework can provide a
basis for decision-making possibilities.

Risks relating to software supply chains come from both
the software itself and the supply-chain process that served to
create the software. We looked at many of these risks and sug-
gested how they might be addressed.

Finally we looked at software assurance requirements that,
if addressed appropriately into software supply chains, would
serve to ensure that the software products themselves have the
desired security and integrity.

In general, we are far behind where we should be in the fight
against vulnerable and dangerous software and the practices
that govern them. We therefore need to take a holistic view of
the factors that affect software supply chains and the software
products that emanate from them, and we must mitigate the
risks with due deference to the need for efficient and effec-
tive means of manufacturing the software that is at the base of
practically all new systems of any importance.

Knowledge Knowns Unknowns

Known

(Knowable)

Obvious—Activate preplanned response
procedures which should have been developed
as part of the software acquisition process

Complicated—

•! Try to avoid using particular software that is
known to have issues (although specific
issues may not be know)

•! If use is unavoidable, monitor status of
software and apply patches immediately

Unknown Oblivious—Activate incident-response
procedures and quickly link up with professional
and industry “grapevines” so as to be forewarned
of future threats

Complex—Activate incident-response process
and try to determine whether similar incidents
might be anticipated and avoided in the future

Unknowable Clandestine—Determine who might know about
unknowable vulnerabilities and make deals with
those with relevant information

Chaotic—React to unexpected chaos with
creative responses in order to stabilize the
situation before being able to take corrective or
restorative actions

Unknowable Secret—First, understand the relevance of the
revelation of a secret system to your organization
and then respond as appropriate, if at all

!

CrossTalk—September/October 2015 43

SUPPLY CHAIN ASSURANCE

1. U.S. General Accounting Office (GAO), Defense Acquisitions: Knowledge of Software
Suppliers Needed to Manage Risks, GAO-04-678, May 2004.

2. Vaughan, Steven J. “It’s an Open Source World: 78 Percent of Companies Run
Open-Source Software,” April 6, 2015. Available at <http://www.zdnet.com/article/
its-an-open-source-world-78-percent-of-companies-run-open-source-software/>

3. U.S. General Accountability Office (GAO), IT Supply Chain: National Security-Related,
Agencies Need to Better Address Risks, GAO-12-361, March 2012.

4. Axelrod, C. Warren. “Risks of Unrecognized Commonalities in the Information
Technology Supply Chain,” Proceedings of the 2010 IEEE International Conference –
Technologies for Homeland Security, Waltham, MA, November 2010.

5. Davidson, Don, and Stephanie Shankles. “We Cannot Blindly Reap the Benefits of a
Globalized ICT Supply Chain,” CrossTalk, (March/April 2013): 4-7.

6. Adams, John, ReMaking American Security: Supply Chain Vulnerabilities &
National Security Risks Across the U.S. Defense Industrial Base, Alliance for
American Manufacturing, May 2013.

7. Boyens, Jon et al. Supply Chain Risk Management Practices for Federal Information
Systems and Organizations, NIST Special Publication 800-161, U.S. Department of
Commerce, April 2015.

8. Committee on National Security Systems (CNSS), Supply Chain Risk Management
(SCRM), CNSSD No. 505, March 2012.

9. Snowden, David J., and Mary E. Boone. “A Leader’s Framework for Decision Making,”
Harvard Business Review (November 2007).

10. Denning, Dorothy E. “Privacy and Security: Toward More Secure Software,” Com-
munications of the ACM, April 2015, pages 24-26.

11. Verizon Enterprise Solutions, 2015 Data Breach Investigations Report, 2015. Available
via link at <http://www.verizonenterprise.com/DBIR/2015/>

12. Axelrod, C. Warren. “Mitigating Software Supply Chain Risk,” ISACA JOnline, August,
2013. Available at <http://www.isaca.org/Journal/archives/2013/Volume-4/Pages/
JOnline-Mitigating-Software-Supply-Chain-Risk.aspx>

13. Goertzel, Karen M., et al. State of the Art Report on Supply Chain Risk Management
for the Off-the-Shelf (OTS) Information and Communications Technology (ICT) Sup-
ply Chain, Department of Defense, Information Assurance Technology Analysis Center
(IATAC), USA, 2010.

14. Axelrod, C. Warren. “Reducing Software Assurance Risks for Security-Critical and
Safely-Critical Systems,” Proc of the 2014 IEEE LISAT (Long Island Systems, Ap-
plications and Technology) Conference, Farmingdale, NY, May 2014.

1. Axelrod, C. Warren. “Malware, ‘Weakware,’ and the Security of Software Supply
Chains,” CrossTalk (March/April 2014): 20-24.

2. Axelrod, C. Warren. “Addressing Supply-Chain Complexity Using Closed-Loop
Simulation-Based Exercises,” Proc, of the Complex Systems 2015 Conference, New
Forest, UK, May 2015.

3. Davidson, Don, “Managing Global Supply Chain Risk: Security & Resiliency (of the
Chain) and Integrity (of Product),” <http://www.ndia.org/Divisions/Divisions/System-
sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20
May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf>

1. This definition is from Section 806 of the Ike Skelton National Defense Authoriza-
tion Act for Fiscal Year 2011 which is available at <http://www.gpo.gov/fdsys/pkg/
BILLS-111hr6523enr/pdf/BILLS-111hr6523enr.pdf>

2. It is claimed in Vaughan [1] that 78 percent of companies use open-source compo-
nents. While the source code of open-source software is readily available for viewing
and testing, there remain many unknown issues with respect to the provenance, quality
and support of particular widely-used software as recent incidents have shown.

3. The acronym NUTS already exists with several connotations, one of which is used by the
military and has the meaning “Nuclear Utilization Target Selection.” The author’s designa-
tion of NUTS as “Not Unreasonable Tracking Systems” does not have any such provenance.

4. Two of the most damaging cyber attacks in recent times occurred against open-
source software, namely OpenSSL (Heartbleed) and Bash (Shellshock). OpenSSL
runs on a substantial population of web servers and Bash is integrated into many
popular operating systems.

5. David Snowden’s explanation of his framework is at <https://www.youtube.com/
watch?v=N7oz366X0-8>

Dr. C. Warren Axelrod is a senior con-
sultant with Delta Risk LLC specializing
in cyber security, risk management and
business resiliency. Previously, he was the
Business Information Security Officer and
Chief Privacy Officer for US Trust.

He was a founding member of the FS/
ISAC (Financial Services Information Sharing
and Analysis Center) and represented nation-
al financial services cyber security interests
during the Y2K date rollover. He testified
before Congress in 2001 on cyber security.

His recent books include Engineer-
ing Safe and Secure Software Systems
(Artech House, 2012) and Outsourcing
Information Security (Artech House, 2004).

He holds a Ph.D. in managerial economics
from Cornell University, and a B.Sc. in electri-
cal engineering and an M.A. in economics
and statistics from Glasgow University. He is
certified as a CISSP and CISM.
Phone: 917-670-1720
Email: waxelrod@delta-risk.net

ABOUT THE AUTHOR REFERENCES

6. See Craig Brougham’s July 9, 2014 posting “Cynefin 101—An Introduction,” available
at <http://www.infoq.com/articles/cynefin-introduction>

7. In [10], Denning mentions having the U.S. government pay “bug bounties” to obtain
information about software vulnerabilities that they would then make available to
the public, but she opposes such a program in favor of developing a suitable liability
regime for software developers and users.

8. Stuxnet is an example of covert malware which was supposed to be kept secret but was
accidentally released into the general Internet and was then analyzed and publicized,
thereby losing much of its value by alerting potential victims as to its form and function.

9. There are many situations in which culpability depends upon who knew what and upon
what one might reasonably be expected to have known at the time of an incident. The
knowledge gap is attributable to decision-makers in such cases and not to contexts.
This is perhaps why Cynefin does not include the “unknown known” category.

10. Verizon’s latest data breach report [11] indicates that “99.9% of the exploited
vulnerabilities were compromised more than a year after the CVE (Common Vulner-
abilities and Exposure) was published.”

11. See [10]

NOTES

ADDITIONAL READING

http://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
http://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
http://www.verizonenterprise.com/DBIR/2015/
http://www.isaca.org/Journal/archives/2013/Volume-4/Pages/JOnline-Mitigating-Software-Supply-Chain-Risk.aspx
http://www.isaca.org/Journal/archives/2013/Volume-4/Pages/JOnline-Mitigating-Software-Supply-Chain-Risk.aspx
mailto:waxelrod@delta-risk.net
http://www.ndia.org/Divisions/Divisions/System-sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf
http://www.ndia.org/Divisions/Divisions/System-sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf
http://www.ndia.org/Divisions/Divisions/System-sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf
http://www.ndia.org/Divisions/Divisions/System-sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf
http://www.gpo.gov/fdsys/pkg/BILLS-111hr6523enr/pdf/BILLS-111hr6523enr.pdf
http://www.gpo.gov/fdsys/pkg/BILLS-111hr6523enr/pdf/BILLS-111hr6523enr.pdf
https://www.youtube.com/watch?v=N7oz366X0-8
https://www.youtube.com/watch?v=N7oz366X0-8
http://www.infoq.com/articles/cynefin-introduction

44 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

1. Introduction to Common Weakness
Enumeration (CWE)

Software weaknesses could be exploited to compromise a
system’s security. This is especially critical for systems such
as the Department of Defense (DoD) systems, in which the
amount of software is very large. Software assurance coun-
termeasures should be applied to address anticipated attacks
against a system. Such attacks are enabled by software
vulnerabilities, and those countermeasures reduce those
vulnerabilities or remove them[12].

Common Weakness Enumeration (CWE) [1] is a collection
of software weakness descriptions that offers a way to iden-
tify and eliminate vulnerabilities in computer systems. CWE
is also used to evaluate the tools and services developed for
finding weaknesses in software. CWE is community-devel-
oped and maintained by MITRE Corporation [1].

A preliminary classification of vulnerabilities, attacks, and
related concepts was developed by MITRE’s CVE [2] team.
That effort began in 2005., CWE was developed as a list
of software weaknesses that is more suitable for software
security assessment [14].

1.1 History of CWE
There have been several community efforts to lever-

age the existing large number of diverse real-world
vulnerabilities. For example, an important step towards
creating the needed collection of software weakness
types was the establishment of the CVE (Common Vul-
nerabilities and Exposures) list [2] in 1999 by MITRE.
Another important step from MITRE was creating the
Preliminary List Of Vulnerability Examples for Research-
ers (PLOVER) in 2005. PLOVER includes more than
1,500 CVE names, and 290 types of software weak-
nesses. The organization of those vulnerabilities is
based on the types of weaknesses among 290 types
that cause each vulnerability [1].

The consolidation and evolution process of CWE [1]

occurred during earlier efforts to classify vulnerabilities
by answering three basic questions:

1) How did the vulnerability enter the system?
2) When did the vulnerability enter the system?
3) Where does the vulnerability appear? Or - Where

is the vulnerability now?

Over a period of time, other revisions and ways to
classify vulnerabilities were introduced. Until more re-
cently, vulnerability categorizations have been developed
as enumerations of weaknesses.

The CWE vision is to consolidate these efforts, and
it is often compared to a “Kitchen Sink”, although in a
good way, as it aggregates many different taxonomies,
software technologies and products, and categorization
perspectives. While it provides a comprehensive record
of software weaknesses, it can be a daunting task for
developers to untangle the complex web of interdepen-
dencies that exist among software weaknesses cap-
tured in the CWE.

Figure 1 presents the CWE efforts context and com-
munity.

They Know Your Weaknesses – Do You?:
Reintroducing Common Weakness Enumeration

Yan Wu, Bowling Green State University
 Irena Bojanova, University of Maryland, Baltimore County
Yaacov Yesha, University of Maryland University College

Abstract: Knowing what makes your software systems vulnerable to
attacks is critical, as software vulnerabilities hurt security, reliability, and
availability of the system as a whole. The Common Weakness Enumeration
(CWE), a community effort that provides the foundation for such knowledge,
is not sufficient, accurate and precise enough to serve as the common lan-
guage measuring stick and provide a common baseline for developers and
security practitioners. In this article, we introduce the relevant body of knowl-
edge that consolidates CWE, including the Semantic Template and Software
Fault Pattern efforts, and how static analysis tools add value through CWEs.
We also provide future directions, present our vision on CWE formalization,
and discuss the value of CWE for not only software assurance community,
but also for Computer Science.

CrossTalk—September/October 2015 45

SUPPLY CHAIN ASSURANCE

1.2 CWE Concepts
Common Weakness Enumeration (CWE) [1] is a collection

of descriptions of software weakness types stored as .xml,
.xsd and .pdf documents. There are four major types of CWE-
IDs: 1) Category, 2) Compound Element, 3) View, and 4)
Weakness. The weaknesses covered by CWE have weakness
IDs. Category and Compound Element are aggregations of
weaknesses. Category aggregates types of weaknesses, and
Compound Element aggregates a group of several events
that together can result in a successful attack. View IDs are
“assigned to predefined perspectives with which one might
look at the weaknesses in CWE.” [1]

Information provided for CWEs includes:
• CWE Identifier Number/Name of the weakness type
• Description of the type
• Alternate terms for the weakness
• Description of the behavior of the weakness
• Description of the exploit of the weakness
• Likelihood of exploit for the weakness
• Description of the consequences of the exploit
• Potential mitigations
• Node relationship information
• Source taxonomies

Figure 1. CWE Efforts Context and Community [http://cwe.mitre.org [1]]

• Code samples for the languages/architectures
• CVE Identifier numbers of vulnerabilities for which that

type of weakness exists
• References [1].

2. CWE Related Practices
Around CWE, there is a list of relevant body of knowledge

such as Common Weakness Scoring System (CWSS), Com-
mon Vulnerabilities and Exposures (CVE), and Common At-
tack Pattern Enumeration and Classification (CAPEC). They
are utilized by many institutions, including DoD, to identify
and mitigate the most dangerous types of vulnerabilities in
the software [12]

2.1 Use of CWE

CWE was established for those who create software,
analyze software for security flaws, and provide tools and ser-
vices for finding and defending against security flaws in soft-
ware [1]. The CWE Compatibility and Effectiveness Program
is based on six requirements: 1) “CWE Searchable,” 2) “CWE
Output,” 3) “Mapping Accuracy,” 4) “CWE Documentation,” 5)
“CWE Coverage,” and 6) “CWE Test Results.”

Meeting the first four requirements is needed for a product
or a service to be designated as “CWE Compatible,” and
meeting all six requirements is needed for a product or ser-

	

http://cwe.mitre.org

46 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

vice to be designated as “CWE Effective.” [1] Static analysis
tools are also encouraged to map their reports to corre-
sponding CWEs so that the results from different tools could
have a standard baseline to be matched and compared.

2.2 Common Weakness Scoring System
(CWSS)

The Common Weakness Scoring System (CWSS) [3]
is included in CWE project. Numerically scoring software
weaknesses is important, as both software developers and
software consumers need to compare weaknesses in order
to prioritize among various activities related to avoiding and
eliminating them. CWSS enables such scoring by methods
such as: Targeted, Generalized, Context-adjusted, and aggre-
gated. CWSS 0.8 is based on the Targeted scoring method.
This method is applicable to a particular package. The CWSS
0.8 scoring formula includes eighteen factors, which are di-
vided into three groups: The Base Finding Group, the Attack
Surface Group, and the Environmental Group.

2.3 Common Vulnerabilities and Exposures
(CVE)

CVE is a dictionary of security vulnerabilities. It was es-
tablished in 1999 in response to lack of standardization of
names of vulnerabilities: different repositories could refer to
the same vulnerability by a different name, resulting in dif-
ficulty in comparing software security tools.

CVE provides standard identifiers for security vulnerabili-
ties [2], and help in finding information about a vulnerability,
including ways of, and available products for, eliminating the
vulnerability. It can also help in determining whether particular
tools are adequate for detecting attacks that are based on
particular vulnerabilities [2].

After discovering a potential security vulnerability, a CVE
Numbering Authority (CNA) can assign to it a CVE identifier
[2]. Then the CVE Editor posts the information on the CVE
List. The Primary CNA is MITRE Corporation. Other CNAs
are software vendors, (for example, Apple Inc. and Adobe
Systems Incorporated), third-party coordinators, (for example,
CERT/CC), or researchers (for example, Core Security Tech-
nologies). The CVE Editor is MITRE Corporation.

2.4 Common Attack Pattern Enumeration and
Classification (CAPEC)

Common Attack Pattern Enumeration and Classification
(CAPEC) [4] was released in 2007. It includes descriptions of
attack patterns. Information provided by CAPEC is needed in
the process of finding vulnerabilities in software. In order to
protect against attacks, knowledge of attack patterns is valu-
able, in addition to knowledge of software weaknesses that
can be exploited by such attacks.

3. CWE in Practice
This section describes how the static analysis tools use

CWEs to tag their tool reports and why it can add value to
their products.

CWE contains a fairly comprehensive collection of applica-

tion architecture, design, code, and deployment errors along
with mitigation advice and examples of vulnerable and correct
code segments. It also describes the SANS top 25 most
dangerous software errors, that often “allow attackers to
completely take over the software, steal data, or prevent the
software from working at all.” [1]

Because of its usefulness, CWE is already recognized and
adopted by many organizations. For example, 40 organiza-
tions with 71 products and services already participated in
the CWE Compatibility and Effectiveness Program (http://
cwe.mitre.org/compatible/organizations.html). CWE has
been adopted by NIST’s National Vulnerability Database
(NVD) (http://nvd.nist.gov) with mappings between CVEs
and CWEs, and the Open Web Application Security Project
(OWASP) – Top Ten Project (https://www.owasp.org/index.
php/owasp_top_ten_project). Also, as part of the NIST SA-
MATE project, warnings from different tools that refer to the
same weakness are being matched to corresponding CWE
IDs to facilitate tools evaluation [9].

State-of-the-art static analysis tools today are able to find
significant types of software security weaknesses. Many tools
that support CWE are accompanied by public listings of the
CWEs, and they are effective at finding and tag their vulner-
ability reports with corresponding CWE IDs. However, some
mappings are not very precise, as CWE is organized into a
hierarchy and some weakness types are refinements of other
weakness types; also a single vulnerability may be the result
of a chain of weaknesses or the composite effect of several
weaknesses. The reality is that no single tool can detect all
weaknesses and multiple tools should be used for complete
coverage and better they all support CWE identification to
facilitate the communication among them.

Customers also ask for the mappings of found weaknesses
to the CWE IDs, as this provides common grounds for evalu-
ating tools’ performance and weaknesses’ coverage. There-
fore, even Static Analysis Tools that claim to be responsible
for only limited number of weakness types [1] should not
underestimate the importance of CWE and the mappings to
CWE IDs.

4. Improving CWE
This section describes existing efforts, which include Se-

mantic Template and Software Fault Pattern, to improve the
readability and usability of CWEs.

CWE is a collection of weaknesses with a highly tangled
structure at various levels of abstraction, mixed contents of
attack, behavior, feature, flaws, and all by natural language
representations. It means that using its relatively unstructured
weakness categories is a daunting task for stakeholders
in the software development community. To help utilize the
valuable contents of CWE, efforts have been made by both
academia and industry to improve the readability and usability
of the CWE.

Wu et. al. [5] reorganized categories of CWEs into Seman-
tic Templates to help developers and researchers construct a
more clear mental model and improve the understanding of
weaknesses. To facilitate the CWE use in the study of vulner-
abilities, easy-to-understand templates for each conceptually

http://cwe.mitre.org/compatible/organizations.html
http://cwe.mitre.org/compatible/organizations.html
http://nvd.nist.gov
https://www.owasp.org/index.php/owasp_top_ten_project
https://www.owasp.org/index.php/owasp_top_ten_project

CrossTalk—September/October 2015 47

SUPPLY CHAIN ASSURANCE

distinct weakness type have been developed. The templates
can then be readily applied to aggregate and study project-
specific vulnerability information from source code reposito-
ries.

Another approach to improve the CWE is Software Fault
Patterns (SFPs) [8]. SFPs decompose CWEs by fine granu-
larity patterns with white-box definitions, then compose them
into original CWEs with invariant core and variation points.
With the purpose of being integrated into a standards-based
tool analysis approach, SFPs focus more on the source code
faults and the features that can facilitate automation. Such
automation can potentially be very valuable for software
assurance activities described in [12], because CWE has an
important role in those activities [12].

4.1 Semantic Templates
A Semantic Template is a human and machine understand-

able representation that contains the following four elements
[5]:

1) Software faults that lead to a weakness
2) Resources that a weakness affects
3) Weakness characteristics
4) Consequences/failures resulting from the weakness.

The required information pieces are either expressed
together within a single CWE entry or spread across mul-
tiple entries. Such complexity makes it difficult to trace the

information expressed in the CWE to the information about
a discovered vulnerability from multiple sources. Therefore,
to facilitate CWE use in the study of vulnerabilities, easy-
to-understand templates for each conceptually distinct
weakness type have been developed. These templates can
then be readily applied to study project-specific vulnerability
information from project repositories. For example, figure 2
shows the Semantic Template for Buffer Overflow, which is
an aggregation of information collected from 42 CWEs. In
this Buffer Overflow Semantic Template, the four groups of
relevant information were carefully collected and synthesized
with “is-a” relationship inside of each group and “can-pre-
cede”, “occurs-in” between the groups so that the lifecycle of
a weakness from the starting point (software fault) to the end
(consequences) is clearly presented.

The Semantic Templates also can provide intuitive visual-
ization capabilities for the collected vulnerability information
such as the CVE vulnerability descriptions, change history
in the open source code repository, source code versions
(before and after the fix), and related CAPECs [6]. Seman-
tic Templates were shown to be helpful to programmers in
constructing mental models of software vulnerabilities by an
experiment described in [7]. In this experiment, 30 Computer
Science students from a senior-level undergraduate Soft-
ware Engineering course were selected to study six sets
of vulnerability-related material with or without Semantic
Templates in a pre-post randomized two-group design. The

Figure 2. Buffer Overflow Semantic Template

	

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE
#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-‐FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW
#190 #680

OFF-BY-
ONE
#193

INCORRECT-
CALCULATION

#682

IMPROPER-
INPUT-

VALIDATION
#20

INTEGER
UNDERFLOW

#191 RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX
#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

ARRAY
#129

HEAP-BASED
#122

MEMORY-
BUFFER
#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118PART-OF

INDEX
(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195
#196

STRING
MANAGEMENT
API ABUSE

785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

INFORMATION
LOSS OR

OMMISSION
#199 #221

POINTER
ERRORS
#467 #468

INTEGER
COERCION
ERROR
#192

IMPROPER HANDLING OF
LENGTH PARAMETER
INCONSISTENCY

130

IS-A

48 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

experimental results revealed that the group with the aid of
Semantic Templates could analyze vulnerabilities with shorter
time and higher recall on CWE identification accuracy.

4.2 Software Fault Patterns
Software Fault Patterns (SFPs) was developed by KDM

Analytics Inc. By identifying and developing white box defini-
tions for SFPs as a formalization process, they could be
integrated into a standards-based tool analysis approach,
benefiting both real-time embedded and enterprise software
assurance systems. Those identified SFPs will be common to
more than one CWE and can be used to further define CWEs
[8].

The SFP is targeted at preventing cyber-attacks by collect-
ing and managing knowledge about exploitable weaknesses
and building more comprehensive prevention, detection and
mitigation solutions. With the knowledge extracted from CWE
taxonomy, three transformations were executed to extract
common patterns and white-box knowledge, redefine existing
weaknesses as specializations of the common patterns, then
invariant core and variation points are identified to redefine
each SFP to further represent weakness specializations [8].

KDM Analytics defines an SFP as a common pattern with
one or more associated pattern rules (conditions), represent-
ing a family of faulty computations. The SFP structure is
organized by the primary SFP definition which refers to the
entire secondary cluster and is arranged into invariant core
and variation points [8]. SFPs can map to multiple CWEs in
such a way that each CWE in the family can be defined as a
specialization of the SFP with its specific variations on the
identified parameters. To date, 21 primary clusters, which
include totally 62 secondary clusters, and 36 unique SFPs
have been identified. 632 CWEs have been categorized while
only 310 of them are identified as discernible CWEs. Identi-
fied SFP definitions could lead to the development of more
accurate testing tools and also improve developer education
and training. They also provide benefits for a possible future
formalization, since for each CWE, only the variation exten-
sion to a formalized SFP is required.

As the proof of recognition of the SFP research work,
CWE-888: Software Fault Pattern (SFP) Clusters was incor-
porated by MITRE as a view into the CWE dictionary.

Both Semantic Templates and SFPs are designed to help
understand and automate the vulnerability study. While Se-
mantic Templates emphasize mental model construction from
the human perspective, with the explanation of the four main
elements of a vulnerability’s lifecycle, while SFP’s approach
focuses on the “foot-holds”, which are places in the code
that present the necessary conditions for vulnerabilities, with
the emphasis on the computation side to aid the test cases
generator’s work.

5. Future Directions on Improving CWE
This section provides future directions and our vision on

CWE formalization.
CWE is a unique community effort and already has been

proved to be extremely useful. For example, the NIST SA-
MATE project has utilized CWE during the past four Static

Analysis Tool Expositions (SATE), whose goal is to advance
research in static analysis tools that look for security defects
in source code [9]. CWE is “a unifying language of discourse
and a measuring stick for comparing tools and services” [10].
It is used in a wide variety of domains by developers and
testers to look for known weaknesses in the code, design,
and architecture of their software products; by consumers to
make informed decisions when selecting software security
tools and services; by researchers to develop new approach-
es and tools for software testing; and by professors to teach
software developers how to avoid known weaknesses on
architecture, design, and code level, in order to avoid security
problems on applications, systems, and networks.

CWE is meant to be “a formal” list of software weakness
types [1]. However, the CWE descriptions are currently in
natural language and sometimes not accurate or precise by
using phrases such as “correctly perform,” “intended com-
mand,” “intended boundary.” For example, the description
summary of CWE-119 in http://cwe.mitre.org/data/defini-
tions/119.html includes the term “intended boundary”, which
is too vague. It does not indicate that it is the boundary given
by the formal semantics.

CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer

“The software performs operations on a memory buffer, but
it can read from or write to a memory location that is outside
of the intended boundary of the buffer.”

While, to mitigate the vagueness of the definition as much
as possible, our tentative definition of CWE-119 is: The
software can access through a buffer a memory location not
allocated to that buffer [11].

Therefore, the next logical step is to formalize CWE defini-
tions, as formal approaches are less ambiguous and offer
high level of accuracy. Our vision for CWE formalization and
creating a system of accurate, precise definitions of CWEs,
although a high-bar, is as follows:

• Revamp CWE entries towards Software Fault Patterns
• Review for accuracy existing CWE description sum-

maries and white-box descriptions
• Analyze descriptions meaning and remove ambiguities
• Precisely define CWE entries with required accuracy
• Decide on a formal specification language
• Formalize CWE definitions
• Determine approach for validating CWE definitions
• Determine approaches for automated generation of

tools for validation and verification towards particular weak-
nesses.

It is challenging to identify known weaknesses as well
as newly discovered weaknesses, but it is challenging also
to describe them in a succinct and unambiguous manner.
Formalization should come in place and help further “shape
and mature the code security assessment industry and dra-
matically accelerate the use and utility of automation-based
assessment.” [1]

Semantic Templates builds on CWE, and introduces a
novel reorganization of CWE. One example for a potential
use of Semantic Templates is for automatic change analysis.
Patches provided by contributors to open source software

http://cwe.mitre.org/data/defini-tions/119.html
http://cwe.mitre.org/data/defini-tions/119.html
http://cwe.mitre.org/data/defini-tions/119.html

CrossTalk—September/October 2015 49

SUPPLY CHAIN ASSURANCE

may introduce vulnerabilities. Semantic Templates may help
in organizing knowledge about known vulnerabilities in a way
that will help patch contributors to detect vulnerabilities [5] .

Once formalized the CWE definitions could be easily
expressed through formal description techniques (FDT) and
used as an input for generation of testing codes. This would
facilitate automatic generation of more precise CWE-com-
patible software analysis and profiling tools for discovery of
vulnerabilities or prioritizing vulnerabilities in terms of threats
and impacts. Especially valuable would be the application
for generation of dynamic analysis tools, which are better at
discovering run-time vulnerabilities that cannot be captured
with static-code analysis techniques – for example, buffer
overflow lends itself to such dynamic analysis.

6. Conclusion
CWE provides common terminology for software develop-

ers, security experts, researchers, and customers to discuss
software vulnerability in design, systems architecture, and
source code. Software is central to computer science and as
one of the purposes of CWE is to help avoid and eliminate
software flaws in various stages of software production, CWE
is of value not only to the software assurance community, but
to computer science as a whole.

Improving quality of software development to reduce
instances of weaknesses takes work from language design-
ers, compiler writers, educators, assurance tool developers,
researchers, vulnerability trackers, software engineers, and
many more. If people in these roles disagree about what
constitutes a particular weakness, or even whether it is a
weakness at all, communication would be difficult at best.
Therefore, broadly accepted definitions should be developed
to allow diverse groups to work effectively together. It is
important the definitions to be unambiguous and complete to
allow professional in the field to understand precisely what
different software assurance tools, services, technologies,
or methods can detect, mitigate, or prevent. Pure formaliza-
tion of CWE would allow automatic generation of software
components and tools to test for weaknesses that lead to
exploitable vulnerabilities in software, create wrappers to
filter out attacks that exploit them, or even rewrite the code
to eliminate them.

Once precisely defined, CWEs could be formally described
using a specification language such as Alloy (http://alloy.
mit.edu/alloy). At its core, Alloy has a simple but expressive
logic based on the notion of relations. Its syntax is designed
to make it easy to build models incrementally and it has a
rich sub-type facility for factoring out common features and a
uniform and powerful syntax for navigation expressions.

To provoke further thinking and discussions throughout
the Software Assurance community and beyond, we pose the
following questions:

• What other formal methods can be used to help for-
malize CWEs with required accuracy and precision and at the
same time allow for further extensions?

• To what granularity should CWEs be formalized? Finer
granularity means more flexibility (especially when new
weaknesses are identified, the extracted commonalities can

reduce the re-invent work) but more effort to create them;
Coarser granularity indicates the easy-to-use weakness
items while we need to re-invent the wheel every time.

• How can the formalized CWEs be used and in which
domains? For education and training? To prevent vulnerabili-
ties? To integrate into software IDEs, test tools, and tools that
generate test tools? To integrate in application security and
development security technical implementation guides such
as that of DOD [13].

• How can an automatic system be constructed to
record newly identified vulnerabilities and classify them by
CWEs? With better formalization and finer granularity of CWE
definitions (which also means limited dictionary for weak-
nesses, better taxonomy of vulnerabilities), text mining could
be the potential technique to mapping CVEs to CWEs at least
semi-automatically.

1. MITRE. “CWE Common Weakness Enumeration.” http://cwe.mitre.org
2. MITRE. “CVE Common Vulnerabilities and Exposure.” http://cve.mitre.org
3. MITRE. “CWE Common Weakness Enumeration Common Weakness Scoring System

(CWSS) CWSS Version 0.8.” June 2011. Project Coordinator: Bob Martin, Document
Editor: Steve Christey. http://cwe.mitre.org/cwss

4. MITRE. “Common Attack Pattern Enumeration and Classification (CAPEC)TM A
Community Knowledge Resource for Building Secure Software.” http://makingsecuri-
tymeasurable.mitre.org/docs/capec-intro-handout.pdf

5. Y. Wu, R. A. Gandhi, and H. Siy. “Using semantic templates to study vulnerabilities
recorded in large software repositories.” 2010 ICSE Workshop on Software Engineer-
ing for Secure Systems, SESS ‘10, pages 22-28, New York, NY, USA, 2010. ACM.

6. R. Gandhi, H. Siy, Y. Wu. “Studying Software Vulnerabilities.” CrossTalk, The Journal
of Defense Software Engineering, September/October 2010.

7. Y. Wu, H. Siy, R. Gandhi. “Empirical Results on the Study of Software Vulnerabilities
(NIER Track).” 33rd International Conference on Software Engineering (ICSE 2011),
Honolulu, Hawaii. May 2011.

8. B.A. Calloni, D. Campara, and N. Mansourov. (2011). Embedded Information Systems
Technology Support (EISTS) ---Task Order 0006: Vulnerability Path Analysis and
Demonstration (VPAD), Volume 2 - White Box Definitions of Software Fault Patterns.

9. NIST. “Special Publication 500-297 Report on the Static Analysis Tool Exposition
(SATE) IV.”

 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-297.pdf
10. R. Martin, S. Barnum, S. Christey. “Being Explicit about Security Weaknesses”
 http://cwe.mitre.org/documents/being-explicit/BlackHat_BeingExplicit_WP.pdf
11. Paul E. Black, Yan Wu, Yaacov Yesha, Irena Bojanova, in preparation.
12. Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE)) and

Department of Defense Chief Information Officer (DoD CIO). Software Assurance
Countermeasures in Program Protection Planning. Washington, D.C. 2014. www.acq.
osd.mil/se/docs/SwA-CM-in-PPP.pdf

14. DISA for DOD, Application Security and Development Security Technical Implemen-
tation Guide (STIG), Version 3, Release 8. 25 July2014, http://iase.disa.mil/stigs/
app-security/app-security/Pages/index.aspx

15. MITRE: CWE Common Weakness Enumeration, Frequently Asked Questions (FAQ),
http://cwe.mitre.org/about/faq.html#A.8

REFERENCES

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy
http://cwe.mitre.org
http://cve.mitre.org
http://cwe.mitre.org/cwss
http://makingsecuri-tymeasurable.mitre.org/docs/capec-intro-handout.pdf
http://makingsecuri-tymeasurable.mitre.org/docs/capec-intro-handout.pdf
http://makingsecuri-tymeasurable.mitre.org/docs/capec-intro-handout.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-297.pdf
http://cwe.mitre.org/documents/being-explicit/BlackHat_BeingExplicit_WP.pdf
http://www.acq
http://iase.disa.mil/stigs/
http://cwe.mitre.org/about/faq.html#A.8

50 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Yan Wu is currently working as an assistant professor at Computer Science Department of
Bowling Green State University, and she previously was a guest researcher in SAMATE
team at NIST. She received her Ph.D. degree in Information Technology in 2011 from the
University of Nebraska at Omaha. The main goal of her research is to conduct empirical
study on analyzing software engineering knowledge in order to support the development
and maintenance of reliable software-intensive systems.

E-mail: yanwu@bgsu.edu

Irena Bojanova is a professor and program director of Information and Technology
Systems at UMUC. She is the founding chair of the IEEE CS Cloud Computing STC,
a general chair of the IT Professional Conference <http://tinyurl.com/itproconf> , and coedi-
tor of Encyclopedia of Cloud <http://tinyurl.com/EncyclopediaCC>
Computing (Wiley, to appear in 2014). She is also an associate editor in chief of IT <http://
www.computer.org/itpro>
Professional and an associate editor of IEEE Transactions on Cloud Computing <http://
www.computer.org/portal/web/tcc> . You can read her cloud computing blog at www.com-
puter.org/ portal/web/Irena-Bojanova.

E-mail: irena.bojanova@umuc.edu

Yaacov Yesha is a Professor at the Department of Computer Science and Electrical
Engineering at the University of Maryland, Baltimore County. He received his PhD
in Computer Science in 1979 from the Weizmann Institute of Science. He has received
substantial research funding from government and industry. He was a program
committee member of several conferences and a Chair of two workshops at IBM
CASCON 2007.

E-mail: yayesha@cs.umbc.edu

ABOUT THE AUTHORs

mailto:yanwu@bgsu.edu
http://tinyurl.com/itproconf
http://tinyurl.com/EncyclopediaCC
http://www.computer.org/itpro
http://www.computer.org/itpro
http://www.computer.org/portal/web/tcc
http://www.computer.org/portal/web/tcc
http://www.com-puter.org/
http://www.com-puter.org/
http://www.com-puter.org/
mailto:irena.bojanova@umuc.edu
mailto:yayesha@cs.umbc.edu

CrossTalk—September/October 2015 51

COMING EVENTS

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

2015 7th International Conference on Software
Technology and Engineering (ICSTE 2015)
September 19-20, 2015
Hong Kong
http://www.icste.org/

SEDE 2015: 24th International Conference on
Software Engineering and Data Engineering
Oct 12-14, 2015
San Diego, Ca
http://www.cse.unr.edu/SEDE

STC 2015, the 27th Annual IEEE Software
Technology Conference
October 12 - 15, 2015
Long Beach, CA
http://conference.usu.edu/STC

EnCASE 2015: Second International Workshop
on Engineering Cloud Applications & Services
Oct 19, 2015 – Oct 21, 2015
Rome, Italy
http://www.dis.uniroma1.it/~soca2015

SLE 2015: ACM SIGPLAN Software Language
Engineering
Oct 25-27, 2015
Pittsburgh, PA
http://conf.researchr.org/home/sle2015

SEMCMI 2015: The International Conference on
Software Engineering, Mobile Computing and
Media Informatics- Part of the Fourth World Con-
gress on Computing and Information Technology
Kuala Lumpur
October 27-29, 2015
http://sdiwc.net/conferences/semcmi2015

Better Software Conference East
Nov 8- Nov 13, 2015
Orlando, Florida
http://bsceast.techwell.com

30th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2015)
November 9-13, 2015
Lincoln, Nebraska
http://ase2015.unl.edu/#tab-main

ACTION15: Actionable Analytics for SE
Nov 9, 2015 – Nov 13, 2015
Lincoln, Nebraska
http://action15.github.io

2015 IEEE 23rd International Conference on
Network Protocols (ICNP)
Nov 10, 2015 – Nov 13, 2015
San Francisco, CA
http://icnp15.cs.ucr.edu

INFuture2015: e-Institutions – Openness,
Accessibility, and Preservation
Nov 11, 2015 - Nov 13, 2015
Zagreb, Croatia
http://infoz.ffzg.hr/INFuture

2015 SC - International Conference for High
Performance Computing, Networking, Storage
and Analysis
Nov 15, 2015 – Nov 20, 2015
Austin, TX
http://www.ieee.org/conferences_events/conferences/confer-
encedetails/index.html?Conf_ID=32761

http://www.crosstalkonline.org/events
http://www.icste.org/
http://www.cse.unr.edu/SEDE
http://conference.usu.edu/STC
http://www.dis.uniroma1.it/~soca2015
http://conf.researchr.org/home/sle2015
http://sdiwc.net/conferences/semcmi2015
http://bsceast.techwell.com
http://ase2015.unl.edu/#tab-main
http://action15.github.io
http://icnp15.cs.ucr.edu
http://infoz.ffzg.hr/INFuture
http://www.ieee.org/conferences_events/conferences/confer-encedetails/index.html?Conf_ID=32761
http://www.ieee.org/conferences_events/conferences/confer-encedetails/index.html?Conf_ID=32761
http://www.ieee.org/conferences_events/conferences/confer-encedetails/index.html?Conf_ID=32761

46 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCEUPCOMING EVENTS

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

http://www.crosstalkonline.org

CrossTalk—September/October 2015 47

SUPPLY CHAIN ASSURANCEBACKTALK

“An army marches on its stomach, but sits on its ……”

I know the question that you are dying to ask is, “Who is the
father of preserved foods,” right? Clarence Birdseye? Nope –
sorry – he was the father of flash-frozen foods. The honor of
being the father of preserved foods belongs to Nicolas Appert.

Appert was a confectioner and chef in Paris from 1784 to 1795.
In 1795, he began experimenting with ways to preserve foodstuffs,
succeeding with soups, vegetables, juices, dairy products, meats,
jellies, jams, and syrups. He placed food in glass jars, sealed them
with cork and sealing wax and placed them in boiling water.

Why would a confectioner develop such a fixation on preserv-
ing foods? Well, you see, it was not about a fixation, it was about
money! France was engaged in various conflicts during the late
1790s and early 1800s. The French Army was well aware that
an army marches on its stomach. When engaged in conflicts in
locations where the locals were unable (or unwilling) to supply
provisions, it was difficult to keep the soldiers well fed.

 So, in 1795 the French military offered a cash prize of
12,000 francs (about about USD $2 million in today’s money)
for a new method to preserve food. Appert was definitely
interested! After some 14 or 15 years of experimentation,
Appert submitted his invention and won the prize in January
1810 on the condition that he make the method public. So, the
same year, Appert published L’Art de conserver les substances
animales et végétales (or The Art of Preserving Animal and
Vegetable Substances). This is considered the world’s first
cookbook concerning modern food preservation methods. His
method was to cut up and place foodstuffs in a bottle, leaving
air space at the top of the bottle. Then, a cork would then be
sealed firmly in the jar by using a vise, and the bottle was then
wrapped in canvas to protect it. Next, the bottle was placed
into boiling water and then boiled for as much time as Appert
deemed appropriate for cooking the contents thoroughly. The
cork was then reinforced with wire.

It was not a fast process (it took up to five hours per bottle),
but it worked. It is worth noting that Appert (nor anybody else at
the time) had any idea WHY it worked – it would be almost 50
years before another Frenchman, Louis Pasteur, showed the re-
lationship between bacteria and food spoilage. In any case, Ap-
pert was given the prize, and started a company that produced
canned foodstuffs for more than 100 years.

Which leads us to 1815. Napoleon at this time was self-
proclaimed Emperor, and was engaged against the coalition
armies of Great Britain, Russia, Austria, and Prussia at the battle
of Waterloo.

What in the world does food preservation have to do with
Waterloo? You see, the majority of the foodstuff that the French
carried with them to battle consisted of energy-giving proteins
– beef, lamb, and other meats. I don’t know about your digestive
system, but a diet heavy in protein (and low in high-fiber food
choices) can make you wish that there were large supplies of
prunes also accompanying the meal. During the Waterloo con-
flict, Napoleon was troubled by hemorrhoids, which made sitting
on a horse for long periods of time difficult and painful.

This condition led to disastrous results at Waterloo. Waterloo
occurred on Sunday, 18 June 1815, near Waterloo in present-
day Belgium. There had been several days of fighting – on the
previous Friday, the French defeated the Prussian army at Ligny
(about 20 miles from Waterloo). This turned out to be the last
battle ever won by Napoleon.

On Sunday, the British troops, led by the Duke of Wellington,
combined with the re-grouped Prussians (led Gebhard von
Blücher) and attacked. During the critical phases of the battle,
Napoleon was unable to sit on his horse for other than very
short periods of time. This greatly interfered with Napoleon’s
ability to survey the situation and direct his troops effectively.
Napoleon was unaware just how weak his right flank had
become – and the Prussians were able to break through the
weakened right flank.

At the same time, Wellington attached from the front – and the
French were driven from the battlefield in complete disarray. All
because Napoleon couldn’t sit in his saddle. Probably due to a
high-protein low-fiber diet. Because food preservation techniques
did not require the French to forage for local produce (where the
local diet would have been healthier and higher in fiber).

Maybe a few cases of prunes or some Milk of Magnesia would
have helped. But then, those weren’t available in the supply chain.

The supply chain – like software – needs to know not just the
requirements, but also the actual needs of its users. But that’s
another Backtalk column.

David A. Cook
Stephen F. Austin State University

Supply Chain UnAssurance

An Alternate View of History by Dave Cook

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

CrossTalk thanks the
above organizations for
providing their support.

CrossTalk / 517 SMXS MXDED
6022 Fir Ave.
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

https://buildsecurityin.us-cert.gov/swa/index.html
https://buildsecurityin.us-cert.gov/bsi/home.html
https://buildsecurityin.us-cert.gov/swa
https://buildsecurityin.us-cert.gov/swa/about.html
http://www.navair.navy.mil
http://www.309smxg.hill.af.mil

	Front Cover
	Table of Contents
	From the Sponsor
	Towards Supply Chain Information Integrity Preservation
	Software and Hardware Assurance
	Premature Allocation of Program Requirements to Suppliers
	From DIACAP to RMF
	Model-Based Engineering for Supply Chain Risk Management
	NASA’s Approach to Software Assurance
	Software Security Assurance SOUP to NUTS
	They Know Your Weaknesses – Do You?:
	Upcoming Events
	BackTalk
	Back Cover

