
44 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

1. Introduction to Common Weakness
Enumeration (CWE)

Software weaknesses could be exploited to compromise a
system’s security. This is especially critical for systems such
as the Department of Defense (DoD) systems, in which the
amount of software is very large. Software assurance coun-
termeasures should be applied to address anticipated attacks
against a system. Such attacks are enabled by software
vulnerabilities, and those countermeasures reduce those
vulnerabilities or remove them[12].

Common Weakness Enumeration (CWE) [1] is a collection
of software weakness descriptions that offers a way to iden-
tify and eliminate vulnerabilities in computer systems. CWE
is also used to evaluate the tools and services developed for
finding weaknesses in software. CWE is community-devel-
oped and maintained by MITRE Corporation [1].

A preliminary classification of vulnerabilities, attacks, and
related concepts was developed by MITRE’s CVE [2] team.
That effort began in 2005., CWE was developed as a list
of software weaknesses that is more suitable for software
security assessment [14].

1.1 History of CWE
There have been several community efforts to lever-

age the existing large number of diverse real-world
vulnerabilities. For example, an important step towards
creating the needed collection of software weakness
types was the establishment of the CVE (Common Vul-
nerabilities and Exposures) list [2] in 1999 by MITRE.
Another important step from MITRE was creating the
Preliminary List Of Vulnerability Examples for Research-
ers (PLOVER) in 2005. PLOVER includes more than
1,500 CVE names, and 290 types of software weak-
nesses. The organization of those vulnerabilities is
based on the types of weaknesses among 290 types
that cause each vulnerability [1].

The consolidation and evolution process of CWE [1]

occurred during earlier efforts to classify vulnerabilities
by answering three basic questions:

1) How did the vulnerability enter the system?
2) When did the vulnerability enter the system?
3) Where does the vulnerability appear? Or - Where

is the vulnerability now?

Over a period of time, other revisions and ways to
classify vulnerabilities were introduced. Until more re-
cently, vulnerability categorizations have been developed
as enumerations of weaknesses.

The CWE vision is to consolidate these efforts, and
it is often compared to a “Kitchen Sink”, although in a
good way, as it aggregates many different taxonomies,
software technologies and products, and categorization
perspectives. While it provides a comprehensive record
of software weaknesses, it can be a daunting task for
developers to untangle the complex web of interdepen-
dencies that exist among software weaknesses cap-
tured in the CWE.

Figure 1 presents the CWE efforts context and com-
munity.

They Know Your Weaknesses – Do You?:
Reintroducing Common Weakness Enumeration

Yan Wu, Bowling Green State University
 Irena Bojanova, University of Maryland, Baltimore County
Yaacov Yesha, University of Maryland University College

Abstract: Knowing what makes your software systems vulnerable to
attacks is critical, as software vulnerabilities hurt security, reliability, and
availability of the system as a whole. The Common Weakness Enumeration
(CWE), a community effort that provides the foundation for such knowledge,
is not sufficient, accurate and precise enough to serve as the common lan-
guage measuring stick and provide a common baseline for developers and
security practitioners. In this article, we introduce the relevant body of knowl-
edge that consolidates CWE, including the Semantic Template and Software
Fault Pattern efforts, and how static analysis tools add value through CWEs.
We also provide future directions, present our vision on CWE formalization,
and discuss the value of CWE for not only software assurance community,
but also for Computer Science.

CrossTalk—September/October 2015 45

SUPPLY CHAIN ASSURANCE

1.2 CWE Concepts
Common Weakness Enumeration (CWE) [1] is a collection

of descriptions of software weakness types stored as .xml,
.xsd and .pdf documents. There are four major types of CWE-
IDs: 1) Category, 2) Compound Element, 3) View, and 4)
Weakness. The weaknesses covered by CWE have weakness
IDs. Category and Compound Element are aggregations of
weaknesses. Category aggregates types of weaknesses, and
Compound Element aggregates a group of several events
that together can result in a successful attack. View IDs are
“assigned to predefined perspectives with which one might
look at the weaknesses in CWE.” [1]

Information provided for CWEs includes:
• CWE Identifier Number/Name of the weakness type
• Description of the type
• Alternate terms for the weakness
• Description of the behavior of the weakness
• Description of the exploit of the weakness
• Likelihood of exploit for the weakness
• Description of the consequences of the exploit
• Potential mitigations
• Node relationship information
• Source taxonomies

Figure 1. CWE Efforts Context and Community [http://cwe.mitre.org [1]]

• Code samples for the languages/architectures
• CVE Identifier numbers of vulnerabilities for which that

type of weakness exists
• References [1].

2. CWE Related Practices
Around CWE, there is a list of relevant body of knowledge

such as Common Weakness Scoring System (CWSS), Com-
mon Vulnerabilities and Exposures (CVE), and Common At-
tack Pattern Enumeration and Classification (CAPEC). They
are utilized by many institutions, including DoD, to identify
and mitigate the most dangerous types of vulnerabilities in
the software [12]

2.1 Use of CWE

CWE was established for those who create software,
analyze software for security flaws, and provide tools and ser-
vices for finding and defending against security flaws in soft-
ware [1]. The CWE Compatibility and Effectiveness Program
is based on six requirements: 1) “CWE Searchable,” 2) “CWE
Output,” 3) “Mapping Accuracy,” 4) “CWE Documentation,” 5)
“CWE Coverage,” and 6) “CWE Test Results.”

Meeting the first four requirements is needed for a product
or a service to be designated as “CWE Compatible,” and
meeting all six requirements is needed for a product or ser-

	

http://cwe.mitre.org

46 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

vice to be designated as “CWE Effective.” [1] Static analysis
tools are also encouraged to map their reports to corre-
sponding CWEs so that the results from different tools could
have a standard baseline to be matched and compared.

2.2 Common Weakness Scoring System
(CWSS)

The Common Weakness Scoring System (CWSS) [3]
is included in CWE project. Numerically scoring software
weaknesses is important, as both software developers and
software consumers need to compare weaknesses in order
to prioritize among various activities related to avoiding and
eliminating them. CWSS enables such scoring by methods
such as: Targeted, Generalized, Context-adjusted, and aggre-
gated. CWSS 0.8 is based on the Targeted scoring method.
This method is applicable to a particular package. The CWSS
0.8 scoring formula includes eighteen factors, which are di-
vided into three groups: The Base Finding Group, the Attack
Surface Group, and the Environmental Group.

2.3 Common Vulnerabilities and Exposures
(CVE)

CVE is a dictionary of security vulnerabilities. It was es-
tablished in 1999 in response to lack of standardization of
names of vulnerabilities: different repositories could refer to
the same vulnerability by a different name, resulting in dif-
ficulty in comparing software security tools.

CVE provides standard identifiers for security vulnerabili-
ties [2], and help in finding information about a vulnerability,
including ways of, and available products for, eliminating the
vulnerability. It can also help in determining whether particular
tools are adequate for detecting attacks that are based on
particular vulnerabilities [2].

After discovering a potential security vulnerability, a CVE
Numbering Authority (CNA) can assign to it a CVE identifier
[2]. Then the CVE Editor posts the information on the CVE
List. The Primary CNA is MITRE Corporation. Other CNAs
are software vendors, (for example, Apple Inc. and Adobe
Systems Incorporated), third-party coordinators, (for example,
CERT/CC), or researchers (for example, Core Security Tech-
nologies). The CVE Editor is MITRE Corporation.

2.4 Common Attack Pattern Enumeration and
Classification (CAPEC)

Common Attack Pattern Enumeration and Classification
(CAPEC) [4] was released in 2007. It includes descriptions of
attack patterns. Information provided by CAPEC is needed in
the process of finding vulnerabilities in software. In order to
protect against attacks, knowledge of attack patterns is valu-
able, in addition to knowledge of software weaknesses that
can be exploited by such attacks.

3. CWE in Practice
This section describes how the static analysis tools use

CWEs to tag their tool reports and why it can add value to
their products.

CWE contains a fairly comprehensive collection of applica-

tion architecture, design, code, and deployment errors along
with mitigation advice and examples of vulnerable and correct
code segments. It also describes the SANS top 25 most
dangerous software errors, that often “allow attackers to
completely take over the software, steal data, or prevent the
software from working at all.” [1]

Because of its usefulness, CWE is already recognized and
adopted by many organizations. For example, 40 organiza-
tions with 71 products and services already participated in
the CWE Compatibility and Effectiveness Program (http://
cwe.mitre.org/compatible/organizations.html). CWE has
been adopted by NIST’s National Vulnerability Database
(NVD) (http://nvd.nist.gov) with mappings between CVEs
and CWEs, and the Open Web Application Security Project
(OWASP) – Top Ten Project (https://www.owasp.org/index.
php/owasp_top_ten_project). Also, as part of the NIST SA-
MATE project, warnings from different tools that refer to the
same weakness are being matched to corresponding CWE
IDs to facilitate tools evaluation [9].

State-of-the-art static analysis tools today are able to find
significant types of software security weaknesses. Many tools
that support CWE are accompanied by public listings of the
CWEs, and they are effective at finding and tag their vulner-
ability reports with corresponding CWE IDs. However, some
mappings are not very precise, as CWE is organized into a
hierarchy and some weakness types are refinements of other
weakness types; also a single vulnerability may be the result
of a chain of weaknesses or the composite effect of several
weaknesses. The reality is that no single tool can detect all
weaknesses and multiple tools should be used for complete
coverage and better they all support CWE identification to
facilitate the communication among them.

Customers also ask for the mappings of found weaknesses
to the CWE IDs, as this provides common grounds for evalu-
ating tools’ performance and weaknesses’ coverage. There-
fore, even Static Analysis Tools that claim to be responsible
for only limited number of weakness types [1] should not
underestimate the importance of CWE and the mappings to
CWE IDs.

4. Improving CWE
This section describes existing efforts, which include Se-

mantic Template and Software Fault Pattern, to improve the
readability and usability of CWEs.

CWE is a collection of weaknesses with a highly tangled
structure at various levels of abstraction, mixed contents of
attack, behavior, feature, flaws, and all by natural language
representations. It means that using its relatively unstructured
weakness categories is a daunting task for stakeholders
in the software development community. To help utilize the
valuable contents of CWE, efforts have been made by both
academia and industry to improve the readability and usability
of the CWE.

Wu et. al. [5] reorganized categories of CWEs into Seman-
tic Templates to help developers and researchers construct a
more clear mental model and improve the understanding of
weaknesses. To facilitate the CWE use in the study of vulner-
abilities, easy-to-understand templates for each conceptually

http://cwe.mitre.org/compatible/organizations.html
http://cwe.mitre.org/compatible/organizations.html
http://nvd.nist.gov
https://www.owasp.org/index.php/owasp_top_ten_project
https://www.owasp.org/index.php/owasp_top_ten_project

CrossTalk—September/October 2015 47

SUPPLY CHAIN ASSURANCE

distinct weakness type have been developed. The templates
can then be readily applied to aggregate and study project-
specific vulnerability information from source code reposito-
ries.

Another approach to improve the CWE is Software Fault
Patterns (SFPs) [8]. SFPs decompose CWEs by fine granu-
larity patterns with white-box definitions, then compose them
into original CWEs with invariant core and variation points.
With the purpose of being integrated into a standards-based
tool analysis approach, SFPs focus more on the source code
faults and the features that can facilitate automation. Such
automation can potentially be very valuable for software
assurance activities described in [12], because CWE has an
important role in those activities [12].

4.1 Semantic Templates
A Semantic Template is a human and machine understand-

able representation that contains the following four elements
[5]:

1) Software faults that lead to a weakness
2) Resources that a weakness affects
3) Weakness characteristics
4) Consequences/failures resulting from the weakness.

The required information pieces are either expressed
together within a single CWE entry or spread across mul-
tiple entries. Such complexity makes it difficult to trace the

information expressed in the CWE to the information about
a discovered vulnerability from multiple sources. Therefore,
to facilitate CWE use in the study of vulnerabilities, easy-
to-understand templates for each conceptually distinct
weakness type have been developed. These templates can
then be readily applied to study project-specific vulnerability
information from project repositories. For example, figure 2
shows the Semantic Template for Buffer Overflow, which is
an aggregation of information collected from 42 CWEs. In
this Buffer Overflow Semantic Template, the four groups of
relevant information were carefully collected and synthesized
with “is-a” relationship inside of each group and “can-pre-
cede”, “occurs-in” between the groups so that the lifecycle of
a weakness from the starting point (software fault) to the end
(consequences) is clearly presented.

The Semantic Templates also can provide intuitive visual-
ization capabilities for the collected vulnerability information
such as the CVE vulnerability descriptions, change history
in the open source code repository, source code versions
(before and after the fix), and related CAPECs [6]. Seman-
tic Templates were shown to be helpful to programmers in
constructing mental models of software vulnerabilities by an
experiment described in [7]. In this experiment, 30 Computer
Science students from a senior-level undergraduate Soft-
ware Engineering course were selected to study six sets
of vulnerability-related material with or without Semantic
Templates in a pre-post randomized two-group design. The

Figure 2. Buffer Overflow Semantic Template

	

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE
#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-‐FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW
#190 #680

OFF-BY-
ONE
#193

INCORRECT-
CALCULATION

#682

IMPROPER-
INPUT-

VALIDATION
#20

INTEGER
UNDERFLOW

#191 RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX
#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

ARRAY
#129

HEAP-BASED
#122

MEMORY-
BUFFER
#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118PART-OF

INDEX
(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195
#196

STRING
MANAGEMENT
API ABUSE

785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

INFORMATION
LOSS OR

OMMISSION
#199 #221

POINTER
ERRORS
#467 #468

INTEGER
COERCION
ERROR
#192

IMPROPER HANDLING OF
LENGTH PARAMETER
INCONSISTENCY

130

IS-A

48 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

experimental results revealed that the group with the aid of
Semantic Templates could analyze vulnerabilities with shorter
time and higher recall on CWE identification accuracy.

4.2 Software Fault Patterns
Software Fault Patterns (SFPs) was developed by KDM

Analytics Inc. By identifying and developing white box defini-
tions for SFPs as a formalization process, they could be
integrated into a standards-based tool analysis approach,
benefiting both real-time embedded and enterprise software
assurance systems. Those identified SFPs will be common to
more than one CWE and can be used to further define CWEs
[8].

The SFP is targeted at preventing cyber-attacks by collect-
ing and managing knowledge about exploitable weaknesses
and building more comprehensive prevention, detection and
mitigation solutions. With the knowledge extracted from CWE
taxonomy, three transformations were executed to extract
common patterns and white-box knowledge, redefine existing
weaknesses as specializations of the common patterns, then
invariant core and variation points are identified to redefine
each SFP to further represent weakness specializations [8].

KDM Analytics defines an SFP as a common pattern with
one or more associated pattern rules (conditions), represent-
ing a family of faulty computations. The SFP structure is
organized by the primary SFP definition which refers to the
entire secondary cluster and is arranged into invariant core
and variation points [8]. SFPs can map to multiple CWEs in
such a way that each CWE in the family can be defined as a
specialization of the SFP with its specific variations on the
identified parameters. To date, 21 primary clusters, which
include totally 62 secondary clusters, and 36 unique SFPs
have been identified. 632 CWEs have been categorized while
only 310 of them are identified as discernible CWEs. Identi-
fied SFP definitions could lead to the development of more
accurate testing tools and also improve developer education
and training. They also provide benefits for a possible future
formalization, since for each CWE, only the variation exten-
sion to a formalized SFP is required.

As the proof of recognition of the SFP research work,
CWE-888: Software Fault Pattern (SFP) Clusters was incor-
porated by MITRE as a view into the CWE dictionary.

Both Semantic Templates and SFPs are designed to help
understand and automate the vulnerability study. While Se-
mantic Templates emphasize mental model construction from
the human perspective, with the explanation of the four main
elements of a vulnerability’s lifecycle, while SFP’s approach
focuses on the “foot-holds”, which are places in the code
that present the necessary conditions for vulnerabilities, with
the emphasis on the computation side to aid the test cases
generator’s work.

5. Future Directions on Improving CWE
This section provides future directions and our vision on

CWE formalization.
CWE is a unique community effort and already has been

proved to be extremely useful. For example, the NIST SA-
MATE project has utilized CWE during the past four Static

Analysis Tool Expositions (SATE), whose goal is to advance
research in static analysis tools that look for security defects
in source code [9]. CWE is “a unifying language of discourse
and a measuring stick for comparing tools and services” [10].
It is used in a wide variety of domains by developers and
testers to look for known weaknesses in the code, design,
and architecture of their software products; by consumers to
make informed decisions when selecting software security
tools and services; by researchers to develop new approach-
es and tools for software testing; and by professors to teach
software developers how to avoid known weaknesses on
architecture, design, and code level, in order to avoid security
problems on applications, systems, and networks.

CWE is meant to be “a formal” list of software weakness
types [1]. However, the CWE descriptions are currently in
natural language and sometimes not accurate or precise by
using phrases such as “correctly perform,” “intended com-
mand,” “intended boundary.” For example, the description
summary of CWE-119 in http://cwe.mitre.org/data/defini-
tions/119.html includes the term “intended boundary”, which
is too vague. It does not indicate that it is the boundary given
by the formal semantics.

CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer

“The software performs operations on a memory buffer, but
it can read from or write to a memory location that is outside
of the intended boundary of the buffer.”

While, to mitigate the vagueness of the definition as much
as possible, our tentative definition of CWE-119 is: The
software can access through a buffer a memory location not
allocated to that buffer [11].

Therefore, the next logical step is to formalize CWE defini-
tions, as formal approaches are less ambiguous and offer
high level of accuracy. Our vision for CWE formalization and
creating a system of accurate, precise definitions of CWEs,
although a high-bar, is as follows:

• Revamp CWE entries towards Software Fault Patterns
• Review for accuracy existing CWE description sum-

maries and white-box descriptions
• Analyze descriptions meaning and remove ambiguities
• Precisely define CWE entries with required accuracy
• Decide on a formal specification language
• Formalize CWE definitions
• Determine approach for validating CWE definitions
• Determine approaches for automated generation of

tools for validation and verification towards particular weak-
nesses.

It is challenging to identify known weaknesses as well
as newly discovered weaknesses, but it is challenging also
to describe them in a succinct and unambiguous manner.
Formalization should come in place and help further “shape
and mature the code security assessment industry and dra-
matically accelerate the use and utility of automation-based
assessment.” [1]

Semantic Templates builds on CWE, and introduces a
novel reorganization of CWE. One example for a potential
use of Semantic Templates is for automatic change analysis.
Patches provided by contributors to open source software

http://cwe.mitre.org/data/defini-tions/119.html
http://cwe.mitre.org/data/defini-tions/119.html
http://cwe.mitre.org/data/defini-tions/119.html

CrossTalk—September/October 2015 49

SUPPLY CHAIN ASSURANCE

may introduce vulnerabilities. Semantic Templates may help
in organizing knowledge about known vulnerabilities in a way
that will help patch contributors to detect vulnerabilities [5] .

Once formalized the CWE definitions could be easily
expressed through formal description techniques (FDT) and
used as an input for generation of testing codes. This would
facilitate automatic generation of more precise CWE-com-
patible software analysis and profiling tools for discovery of
vulnerabilities or prioritizing vulnerabilities in terms of threats
and impacts. Especially valuable would be the application
for generation of dynamic analysis tools, which are better at
discovering run-time vulnerabilities that cannot be captured
with static-code analysis techniques – for example, buffer
overflow lends itself to such dynamic analysis.

6. Conclusion
CWE provides common terminology for software develop-

ers, security experts, researchers, and customers to discuss
software vulnerability in design, systems architecture, and
source code. Software is central to computer science and as
one of the purposes of CWE is to help avoid and eliminate
software flaws in various stages of software production, CWE
is of value not only to the software assurance community, but
to computer science as a whole.

Improving quality of software development to reduce
instances of weaknesses takes work from language design-
ers, compiler writers, educators, assurance tool developers,
researchers, vulnerability trackers, software engineers, and
many more. If people in these roles disagree about what
constitutes a particular weakness, or even whether it is a
weakness at all, communication would be difficult at best.
Therefore, broadly accepted definitions should be developed
to allow diverse groups to work effectively together. It is
important the definitions to be unambiguous and complete to
allow professional in the field to understand precisely what
different software assurance tools, services, technologies,
or methods can detect, mitigate, or prevent. Pure formaliza-
tion of CWE would allow automatic generation of software
components and tools to test for weaknesses that lead to
exploitable vulnerabilities in software, create wrappers to
filter out attacks that exploit them, or even rewrite the code
to eliminate them.

Once precisely defined, CWEs could be formally described
using a specification language such as Alloy (http://alloy.
mit.edu/alloy). At its core, Alloy has a simple but expressive
logic based on the notion of relations. Its syntax is designed
to make it easy to build models incrementally and it has a
rich sub-type facility for factoring out common features and a
uniform and powerful syntax for navigation expressions.

To provoke further thinking and discussions throughout
the Software Assurance community and beyond, we pose the
following questions:

• What other formal methods can be used to help for-
malize CWEs with required accuracy and precision and at the
same time allow for further extensions?

• To what granularity should CWEs be formalized? Finer
granularity means more flexibility (especially when new
weaknesses are identified, the extracted commonalities can

reduce the re-invent work) but more effort to create them;
Coarser granularity indicates the easy-to-use weakness
items while we need to re-invent the wheel every time.

• How can the formalized CWEs be used and in which
domains? For education and training? To prevent vulnerabili-
ties? To integrate into software IDEs, test tools, and tools that
generate test tools? To integrate in application security and
development security technical implementation guides such
as that of DOD [13].

• How can an automatic system be constructed to
record newly identified vulnerabilities and classify them by
CWEs? With better formalization and finer granularity of CWE
definitions (which also means limited dictionary for weak-
nesses, better taxonomy of vulnerabilities), text mining could
be the potential technique to mapping CVEs to CWEs at least
semi-automatically.

1. MITRE. “CWE Common Weakness Enumeration.” http://cwe.mitre.org
2. MITRE. “CVE Common Vulnerabilities and Exposure.” http://cve.mitre.org
3. MITRE. “CWE Common Weakness Enumeration Common Weakness Scoring System

(CWSS) CWSS Version 0.8.” June 2011. Project Coordinator: Bob Martin, Document
Editor: Steve Christey. http://cwe.mitre.org/cwss

4. MITRE. “Common Attack Pattern Enumeration and Classification (CAPEC)TM A
Community Knowledge Resource for Building Secure Software.” http://makingsecuri-
tymeasurable.mitre.org/docs/capec-intro-handout.pdf

5. Y. Wu, R. A. Gandhi, and H. Siy. “Using semantic templates to study vulnerabilities
recorded in large software repositories.” 2010 ICSE Workshop on Software Engineer-
ing for Secure Systems, SESS ‘10, pages 22-28, New York, NY, USA, 2010. ACM.

6. R. Gandhi, H. Siy, Y. Wu. “Studying Software Vulnerabilities.” CrossTalk, The Journal
of Defense Software Engineering, September/October 2010.

7. Y. Wu, H. Siy, R. Gandhi. “Empirical Results on the Study of Software Vulnerabilities
(NIER Track).” 33rd International Conference on Software Engineering (ICSE 2011),
Honolulu, Hawaii. May 2011.

8. B.A. Calloni, D. Campara, and N. Mansourov. (2011). Embedded Information Systems
Technology Support (EISTS) ---Task Order 0006: Vulnerability Path Analysis and
Demonstration (VPAD), Volume 2 - White Box Definitions of Software Fault Patterns.

9. NIST. “Special Publication 500-297 Report on the Static Analysis Tool Exposition
(SATE) IV.”

 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-297.pdf
10. R. Martin, S. Barnum, S. Christey. “Being Explicit about Security Weaknesses”
 http://cwe.mitre.org/documents/being-explicit/BlackHat_BeingExplicit_WP.pdf
11. Paul E. Black, Yan Wu, Yaacov Yesha, Irena Bojanova, in preparation.
12. Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE)) and

Department of Defense Chief Information Officer (DoD CIO). Software Assurance
Countermeasures in Program Protection Planning. Washington, D.C. 2014. www.acq.
osd.mil/se/docs/SwA-CM-in-PPP.pdf

14. DISA for DOD, Application Security and Development Security Technical Implemen-
tation Guide (STIG), Version 3, Release 8. 25 July2014, http://iase.disa.mil/stigs/
app-security/app-security/Pages/index.aspx

15. MITRE: CWE Common Weakness Enumeration, Frequently Asked Questions (FAQ),
http://cwe.mitre.org/about/faq.html#A.8

REFERENCES

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy
http://cwe.mitre.org
http://cve.mitre.org
http://cwe.mitre.org/cwss
http://makingsecuri-tymeasurable.mitre.org/docs/capec-intro-handout.pdf
http://makingsecuri-tymeasurable.mitre.org/docs/capec-intro-handout.pdf
http://makingsecuri-tymeasurable.mitre.org/docs/capec-intro-handout.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-297.pdf
http://cwe.mitre.org/documents/being-explicit/BlackHat_BeingExplicit_WP.pdf
http://www.acq
http://iase.disa.mil/stigs/
http://cwe.mitre.org/about/faq.html#A.8

50 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Yan Wu is currently working as an assistant professor at Computer Science Department of
Bowling Green State University, and she previously was a guest researcher in SAMATE
team at NIST. She received her Ph.D. degree in Information Technology in 2011 from the
University of Nebraska at Omaha. The main goal of her research is to conduct empirical
study on analyzing software engineering knowledge in order to support the development
and maintenance of reliable software-intensive systems.

E-mail: yanwu@bgsu.edu

Irena Bojanova is a professor and program director of Information and Technology
Systems at UMUC. She is the founding chair of the IEEE CS Cloud Computing STC,
a general chair of the IT Professional Conference <http://tinyurl.com/itproconf> , and coedi-
tor of Encyclopedia of Cloud <http://tinyurl.com/EncyclopediaCC>
Computing (Wiley, to appear in 2014). She is also an associate editor in chief of IT <http://
www.computer.org/itpro>
Professional and an associate editor of IEEE Transactions on Cloud Computing <http://
www.computer.org/portal/web/tcc> . You can read her cloud computing blog at www.com-
puter.org/ portal/web/Irena-Bojanova.

E-mail: irena.bojanova@umuc.edu

Yaacov Yesha is a Professor at the Department of Computer Science and Electrical
Engineering at the University of Maryland, Baltimore County. He received his PhD
in Computer Science in 1979 from the Weizmann Institute of Science. He has received
substantial research funding from government and industry. He was a program
committee member of several conferences and a Chair of two workshops at IBM
CASCON 2007.

E-mail: yayesha@cs.umbc.edu

ABOUT THE AUTHORs

mailto:yanwu@bgsu.edu
http://tinyurl.com/itproconf
http://tinyurl.com/EncyclopediaCC
http://www.computer.org/itpro
http://www.computer.org/itpro
http://www.computer.org/portal/web/tcc
http://www.computer.org/portal/web/tcc
http://www.com-puter.org/
http://www.com-puter.org/
http://www.com-puter.org/
mailto:irena.bojanova@umuc.edu
mailto:yayesha@cs.umbc.edu

