W

INFORMATION
TECHNOLOGY
LABORATORY

[L Science Day.

Bugs Framework (BF)

Formalizing Software Security Bugs, Weaknesses, and Vulnerabllities

ICRERTIERIZRNIN

Motivation

® Crucial need of a formal classification system allowing unambiguous specification of software
security bugs and weaknesses, and the vulnerabilities that exploit them.

Objective

® Create bug models, weakness taxonomies, and vulnerability models with causation and
propagation rules; and an unambiguous formal weakness/vulnerability specification language.

BF Bug Models

® Bug/Fault Type related software execution phases with non-overlapping operations
» Causation between weaknesses — by operation flow

BF Data Type Bugs Model

® Secure coding principles —e.g.,
T o Input/Output Safety

DCL (entity))
4 MAD (Owner) Lvapriéspace ﬁ)rgggjgtt/Retum/ O Data Type Safety
o Memory Safety

BF Memory Bugs Model

Initialize

assign &
position

MAL (Object)

Reassign

Reposition

++, -, etc.|

4 NRS (entity name)

\ Subtype Object

function

Argument
Reallocate
Reallocate | T

<
/ Argument / Return /
Dereference -

MUS (Object) (.) Object
4 4 TCM (object)
Calculate
Initialize Write
(first write] Clear Evaluate

(ast write] _
- -,

\

>» Type System
BF, I. Bojanova, 2022 Timeline
/ BF Input/Output Check Bugs Model

MDL (Object) Unchecked

Data —‘*""‘\\\\\\::;;—_——__—_————___——_—_--§§§\\\\\\\\\§!
Reduce
| Reduce | -

DVL) 4 DVR
Reallocate
.)

BF L
=

. Bojanova Create ' Destroy
2020 Object Obiect In Use Object J \ J

\ \ >Checked

Data

> Data
BF, |. Bojanova, 2021 Lifetime

BF Weakness Taxonomies

® Weakness Types with valid cause-operation-consequence relations — e.g., the BF MUS class:

BF Memory Corruption/Disclosure (_ MEM) Class Type
BF Memory Use (MUS)Class

Causes Operations Consequences

® Taxons —types (in black) and values (in purple)
o Operations and operands
o Causes and consequences
o Attributes of operations and operands

Initialize Object Data Error
Missing Code Dereference
Mismatched Operation Read

Erroneous Code Write
Clear Memory Corruption/Disclosure

Exploitable Error
Not Cleared Object
NULL Pointer Dereference
Untrusted Pointer Dereference
Data Object Corruption
Type Fault Type Type Confusion
Casted Pointer Address Use After Free
Size Buffer Overflow
Buffer Underflow
Buffer Over-Read
Buffer Under-Read
Uninitialized Pointer Dereference

Code Defect Bug
Uninitialized Object

Data Fault
Forbidden Address

Wrong Size Operands

» Causation within weaknesses — all valid triples
(Bug/Fault, Operation, Error/Exploitable Error)

Address Fault .
NULL Pointer Structured — cause-operation-consequence

Wild Pointer
Dangling Pointer
Untrusted Pointer
Over Bounds Pointer
Under Bounds Pointer

Wrong Position Pointer

Complete — no gaps in coverage

BF, I. Bojanova, 10142023

Attributes

Orthogonal — no overlap by operation

Address State Size Kind ~ Mechanism Source Code Execution Space

Stack Actual Direct Codebase Userland

Heap Used Sequential Third-Party Kernel

/other/ Standard Library Bare-Metal
Compiler/Interpreter

Context-free — programming language
and application domain independent

Size Fault
Not Enough Memory

Bug Fault/Error Exploitable Error Operation/Operand

- 11/08/2023

BF Vulnerabllity Model

BF Vulnerability Model

Bug;, Error;—\Fault, Error,—\Faults,

Improper State; Improper State,

(operationy,
operandyq, ...
operandy;, ...)

(operation,, ...,
operand,j, ...)

(Bug, Operation 4, Error 1) «— lookup()
(Operation 1, Operation ;) «— lookup()
Fault,.Type « Error,.Type

(Faulty, Operation ,, Error ;) «— lookup()
(Operation ,, Operation 3) < lookup()
Fault,.Type <« Error,.Type

Bug, /_\
Improper State;

(operationy,
operandyq, ...
operandy;, ...)

Improper State— (operation, operand,, ..., operand,) tuple
with at least one improper element (depicted in purple).

Initial State — a weakness caused by a Bug in the operation,
resulting in an Error

Propagation State — a weakness caused by a Fault of an operand,

resulting in an Error (operationyy,

Final State — a weakness caused by a Fault in an operand, operandyj, ...

resulting in an Exploitable Error

Failure — a violation of a security requirement caused by an exploit;
may result in a fault starting a new faults-only vulnerability

S Chaining weaknesses orvulnerabilities b
< Propagation by same Fault/Error type

Converging vulnerabilities

(Faulty.1, Operationy, Exploitable Error) <« lookup()
(Exploitable Error, Exploit) <« lookup()

(operationy, ...,
operandyyg, ...)

Improper State;

lookup () for valid operation flow and weaknesstriples

® Chains of weaknesses

o Start with a bug

o Propagate via errors
becoming faults

o Lead to failures

o May chain via faults
from failures

o May converge at
exploitable errors

Exploitable
Improper Statey Error

(operationy, ...,
operandyp, ...)

Exploitable

Improper Statey, Error,

Failure,

B

Exploitable
Improper State, Errory

T

(operation, ...
operand,,, ...)

)

Failureg

BF, I. Bojanova, 2014-2023

BF Formal Language

® BFCFGlisaG=(V,Z, R,S) tuple with finite sets of

tokens 2 ={a | ais BF taxon} U { @, lookup() },

variablesV, rulesR={A—-w | A€V, w € (VU Z)*}, and a predefined start S € V

® BF LL(1)? Attribute CFG?3 is BF CFG derived via left-factorization and left recursion elimination

Syntax Rules
S — Vulnerability Converge_ Failure
Vulnerability — Bug Operation OperAttrs_Error ExplError
OperAttrs_Error_ExplError — Oper_Attr OperAttrs_Error_ExplError
| Error Fault OprndAttrs_Operation
| Exploitable_Error
OprndAttrs Operation —
Operand_Attr OprndAttrs_Operation
| Operation OperAttrs_Error ExplError
Converge Failure —
@D Vulnerability Converge Failure
| Exploit NextVulner_Failure
NextVulner Failure — Fault Operation OperAttrs_Error_ExplError
| Failure €

Semantic Rules

(Bug | Fault, Operation, Error | Exploitable Error) < lookup()
Fault.Type < Error.Type
Exploit.Type < Exploitable Error.Type

® BF formal language is the BF LL(1) CFG
generated set of all strings derivable from S:

L(G)={a€X | S=>"a}

A string starts from S and ends with € (the
empty string) by applying the A — w
production rules regardless of context.

» BF LL(1) = unambiguous BF specifications!

o Lexis — BF taxons

o Syntax — BF vulnerability models’ flow

o Semantics — causation & propagation (BF
bug models operation flow, valid taxon
triples, vulnerability model propagation).

1 CFG — Context-Free Grammar; 2 LL(1) — Left-to-right Leftmost-derivation One-symbol-lookahead; 3 Attribute CFG — adds attributes, and semantic and predicate functions.

Potential Impact

® Models and a formal language for unambiguous bug, weakness, and vulnerability specifications —
for use by professionals, Al algorithms, and systems for training, data generation, and research.

	Slide 1: ITL Science Day

